Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for the Management of Incontinence

a technology for incontinence and urination, applied in the field of incontinence management, can solve the problems of insufficient steroid therapy and urinary incontinence management, and achieve the effect of lessening the incidence of over-incontinen

Inactive Publication Date: 2008-01-24
ALZA CORP
View PDF3 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The method delivers oxybutynin at a consistent rate for up to 24 hours, minimizing peak and valley concentrations, reducing side effects, and providing effective management of urinary incontinence while avoiding overdosing.

Problems solved by technology

Incontinence is particularly common in the elderly, urinary incontinence is present in approximately fifty percent of nursing home patients, and urinary incontinence is a well known urologic problem in women.
The prior art administered separately the steriods, estrogen and / or progesterone hormone replacement therapy however, this steroid therapy is insufficient for the management of incontinence.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0037] A therapeutic oxybutynin composition for administering to a patient and for use in the invention was prepared as follows: First, 103 grams of oxybutynin hydrochloride was dissolved in 1200 ml (milliliters) of anhydrous ethanol. Separately, 2,280 g of polyethylene oxide of 200,000 weight-average molecular weight, 150 g of hydroxypropylmethylcellulose of 9,200 average-number molecular weight and 450 g of sodium chloride were dry blended in a conventional blender for 10 minutes to yield a homogenous blend. Next, the oxybutynin ethanol solution was added slowly to the blend, with the blender continuously blending until all the ingredients were added to the three component dry blend, with the blending continued for another 8 to 10 minutes. The blended wet composition was passed through a 16 mesh screen and dried overnight at a room temperature of 72° F. (22.2°). Then, the dry granules were passed through a 20 mesh screen, 18 g of magnesium stearate was added, and all the ingredien...

example 2

[0038] An osmopolymer hydrogel composition for use in the invention was prepared as follows: first 1274 g of pharmaceutically acceptable polyethylene oxide comprising a 7,500,000 weight-average molecular weight, 600 g of sodium chloride, and 20 g of colorant ferric oxide were separately screened through a 40 mesh screen. Then, all the screened ingredients were mixed with 100 g of hydroxypropylmethylcellulose of 11,200 average-number molecular weight to produce a homogenous blend. Next, 300 ml of denatured anhydrous alcohol was added slowly to the blend with continuous mixing for 5 minutes. Then, 1.6 g of butylated hydroxytoluene was added, followed by more blending, with 5 g of magnesium stearate added with 5 minutes of blending, to yield a homogenous blend. The freshly prepared granulation is passed through a 20 mesh screen and allowed to dry for 20 hours at 22.2° C. The final composition comprised 63.67 wt % polyethylene oxide of 7,500,000 weight-average molecular weight, 30 wt % ...

example 3

[0039] An osmopolymer hydrogel composition for use in the invention was prepared as follows: first 1274 g of pharmaceutically acceptable sodium carboxymethylcellulose comprising a 2,250,000 weight-average molecular weight, 600 g of sodium chloride, and 20 g ferric oxide were separately screened through a 40 mesh screen. Then, all the screened ingredients were mixed with 100 g of hydroxypropylmethylcellulose of 11,200 average-number molecular weight and 100 g of hydroxypropylcellulose of 30,000 average-number molecular weight to produce a homogenous blend. Next, 300 ml of denatured anhydrous alcohol was added slowly to the blend with continuous mixing for 5 minutes. Then, 1.6 g of butylated hydroxytoluene was added, followed by more blending, with 5 g of magnesium stearate added with 5 minutes of blending, to yield a homogenous blend. The freshly prepared granulation was passed through a 20 mesh screen and allowed to dry for 20 hours at 22.2° C. The final composition comprised 58.67 ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
timeaaaaaaaaaa
diameteraaaaaaaaaa
temperatureaaaaaaaaaa
Login to View More

Abstract

A composition and a dosage form are disclosed comprising oxybutynin alone / or accompanied by another drug indicated for therapy. A method is disclosed for administering oxybutynin alone / or accompanied by a different drug or for administering oxybutynin and a different drug according to a therapeutic program for the management of incontinence alone, and for other therapy.

Description

CROSS-REFERENCE TO RELATED APPLICATION [0001] This application is a continuation-in-part of U.S. patent application, Ser. No. 08 / 806,773 filed Feb. 26, 1997, which application is a continuation-in-part of U.S. patent application Ser. No. 08 / 706,576 filed Sep. 5, 1996, now U.S. Pat. No. 5,840,754 issued Nov. 24, 1998, which is a continuation-in-part of U.S. patent application Ser. No. 08 / 445,849 filed May 22, 1995, now U.S. Pat. No. 5,674,895 issued Oct. 7, 1997, benefit is claimed of these applications, that are assigned to the ALZA Corporation of Palo Alto, Calif.FIELD OF THE INVENTION [0002] This invention pertains to the management of incontinence. More specifically the invention relates to the management of incontinence by administering to a patient having the symptoms of incontinence a therapeutically effective dose of oxybutynin alone, in combination with another drug, proceeded by the administration of another drug, or followed by the administration of another drug. BACKGROUN...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/24A61P13/10A61K9/00A61K9/20A61K31/216A61K31/221
CPCA61K9/0004A61K9/2031A61K9/2054A61K31/24A61K31/216A61K31/221A61K9/209A61P13/10
Inventor GUITTARD, GEORGE V.JAO, FRANCISCOMARKS, SUSAN M.KIDNEY, DAVID J.GUMUCIO, FERNANDO E.GUPTA, SUNEELSATHYAN, GAYATRI
Owner ALZA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products