Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Electrochemical Analyte Detection Apparatus and Method

an electrochemical and analyte technology, applied in the field of electrochemical detection apparatus and method, can solve problems such as immobilization of enzymes, and achieve the effects of low cost, convenient use, and less cos

Inactive Publication Date: 2009-01-29
AGAMATRIX INC
View PDF33 Cites 102 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0065]The present invention provides the ability to perform binding assays for the detection of analyte with electrochemical detection, without the need to apply an external potential or current, and without the need for washing steps commonly employed in sandwich immunoassay procedures. Because of this, the apparatus used to perform the assay can be much simpler, easy to use, and less expensive. In addition, the device components in an electrochemical assay are more robust than those used for example in optical measurements, facilitating the manufacture of the low cost reusable meter for use with disposable test devices.

Problems solved by technology

This results in the immobilization of the enzyme.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Electrochemical Analyte Detection Apparatus and Method
  • Electrochemical Analyte Detection Apparatus and Method
  • Electrochemical Analyte Detection Apparatus and Method

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0069]An electrochemical cell test strip comprising two gold electrodes separated by a double-sided adhesive layer was constructed using the method described in US Patent Publication No. US-2005-0258035-A1 which is incorporated herein by reference. An total of 100 nL enzyme solution (27 mg / mL glucose oxidase in 100 mM sodium citrate buffer pH: 4.1) was dispensed onto the two electrodes and allowed to dry. Test strips were made with different ratios of electrode enzyme activity by apportioning the 100 nL enzyme solution between the two electrodes, with the balance made up with water. For example to make strips with 75% enzyme activity on electrode 1 and 25% enzyme activity on electrode 2, 100 nL of a mixture of 3 parts enzyme solution to 1 part water was dispensed onto electrode 1, and 100 nL of a mixture of 1 part enzyme solution to 3 parts water was dispensed onto electrode 2. A solution of 100 mM beta-D-glucose and 100 mM potassium ferricyanide in water was added to the electroche...

example 2

[0071]By combining the determination of the ratio of enzyme activity dispensed on each electrode (as in Example 1) with a determination of total enzyme activity, the amount of enzyme (E1) present at one electrode can be determined independent of the amount (E2) present at the other electrode.

[0072]Varying amounts of enzyme were dispensed on 2 surfaces that served as electrodes in a sandwich configuration as described in Example 1. Ratio of enzyme activity present at the two electrodes (R=E1 / E2) was determined by measurement of the current flowing in a short circuit configuration. Then the total enzyme activity (Et=E1+E2) was determined by measuring the current flowing with an applied potential difference. E1 and E2 were then calculated from the determined values of R and Et.

[0073]Test strips containing a range of 0.25 microgram to 1 microgram of glucose oxidase were made, with the enzyme distributed between the two electrodes such that R was between 1.5 and 19. These strips were mad...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
pHaaaaaaaaaa
chemical potentialaaaaaaaaaa
concentrationaaaaaaaaaa
Login to View More

Abstract

A method and apparatus for electrochemical detection of analyte in a sample makes use of a binding interaction and relies on the discovery that asymmetric distribution of a redox enzyme between two electrodes that occurs when a redox enzyme-containing reagent is immobilized at the surface of one electrode can be detected as a chemical potential gradient arising from an asymmetry, in the distribution of oxidized or reduced redox substrate. This chemical potential gradient can be detected potentiometrically by observing the potential difference between the electrodes in an open circuit, or amperometrically by observing the current flow between the electrodes when the circuit is closed. In both cases, the observation of asymmetry can be done without the application of an external potential or current to the electrodes.

Description

[0001]This application claims the benefit of U.S. Provisional Application No. 60 / 952,099 filed Jul. 26, 2007, which application is incorporated herein by reference for all purposes.BACKGROUND OF THE INVENTION[0002]This application relates to an apparatus and method for electrochemical detection of an analyte in a sample. The invention utilizes a specific binding relationship between the analyte and at least one reagent provided in the apparatus as a means for detecting the analyte.[0003]Analysis methods in which specific binding between an analyte and a reagent forms the basis for the assay are known. For example, in enzyme-linked immunoassay (EIA or ELISA) procedures, a sandwich is formed between an immobilized antibody and a mobile enzyme-antibody reagent when analyte is present through the interaction of the analyte with the antibody components. This results in the immobilization of the enzyme. The subsequent detection of immobilized enzyme is therefore indicative the presence of...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): G01N33/50
CPCC12Q1/001G01N2333/902G01N33/5438C12Q1/04G01N33/5308G01N27/4166G01N33/573G01N2333/90
Inventor HARDING, IANIYENGAR, SRIDHARWILLIAMS, RICHARD
Owner AGAMATRIX INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products