Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Apparatus and Methods For Providing Uniformly Volume Distributed Combustion of Fuel

a technology of uniform volume distribution and apparatus, applied in the direction of combustion types, combustion methods, lump and pulverulent fuel, etc., can solve the problems of high combustion rate of fuel, low carbon monoxide content and nitric oxide of exhaust, and low oxygen content, so as to improve flameless oxidation of primary fuel, reduce exhaust gas toxicity, and increase the completeness of combustion

Inactive Publication Date: 2010-11-11
GENERAL VORTEX ENERGY
View PDF28 Cites 20 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]In view of the foregoing, various embodiments of the present invention advantageously provide an apparatus and methods for economically and efficiently burning viscous biofuels in a combustion chamber to produce an exhaust which can be utilized as an energy source. Various embodiments of the present invention also advantageously provide an apparatus and methods which include a vortex combustion chamber configured to provide flameless combustion to thereby decrease nitric oxide emissions and increase energy efficiency. Various embodiments of the present invention provide an apparatus and methods which improve upon the Jirnov vortex combustion chamber and precombustion chamber described in U.S. Pat. No. 5,839,270 by Jirnov et al., titled “Sliding-Blade Rotary Air-Heat Engine with Isothermal Compression of Air,” to more efficiently accommodate use of the more viscous fuels, such as glycerol.
[0020]Various embodiments of the present invention also provide methods of providing flameless combustion of a viscous fuel. According to an embodiment of the present invention, such a method can include the steps of inducing a first stage vortex in a primary fuel-air mixture within a main body of a precombustion chamber of a flameless combustor, receiving within a main body of a main combustion chamber of the flameless combustor the primary fuel-air mixture having a first stage vortex induced state, and inducing a second stage vortex in the received primary fuel-air mixture to form a complex vortex pattern to thereby enhance flameless oxidation of the primary fuel within the main body of the main combustion chamber. According to a preferred configuration, the step of inducing can include expelling the primary fuel-air mixture tangentially into the main combustion chamber cavity through a precombustion chamber exhaust outlet. According to this configuration, the diameter of the first stage vortex is substantially smaller than a diameter of the second stage vortex formed within the main combustion chamber.
[0022]According to another embodiment of the present invention, a method of providing flameless combustion of a viscous fuel can include the steps of providing a main vortex combustion chamber of a flameless combustor having a main body substantially enclosing a main combustion chamber cavity having an axial length approximately equal to or greater than an inner diameter of the main combustion chamber cavity, and inducing a vortex within the main combustion chamber cavity to enhance flameless oxidation of a primary fuel. The method can also include the step of providing a combustion exhaust conduit within and axially coincident with the main combustion chamber cavity. The combustion exhaust conduit can have an inlet positioned at a location between an axial position distally forward of an axial midpoint position of the elongate main body of the main combustion chamber housing and an axial position within the main combustion chamber cavity adjacent the distal end portion of the main combustion chamber housing. The axial spacing of the distal end portion of the combustion exhaust conduit from an inner surface of the distal end portion of the main combustion chamber housing can further have a value approximately equal to or greater than that of at least one exhaust conduit main body inner diameter.
[0024]Various embodiments of the present invention also provide a precombustion chamber, and a vortex combustion chamber which is an improvement over the Jirnov vortex combustion chamber and precombustion chamber. Various embodiments of the present invention provide, for example, a vortex combustor including a main combustion chamber connected or otherwise interfaced with a precombustion chamber, which successfully solves problems associated with operating on highly viscous fuels with a high completeness of combustion over the wide range of the coefficient of air redundance and produces a substantial reduction in toxicity of exhaust gases. Various embodiments of the present invention provide high thermal and volumetric efficiency, may employ a variety of types of viscous and non-viscous combustible hydrocarbon fuels, have reduced quantities of environmentally damaging emissions, and have a simplified combustor design and ease of fabricating, which is economical to manufacture in mass production and is inexpensive to operate, service, and repair.
[0025]Various embodiments of the present invention provide a vortex chamber positioned at the tube inlet and provide feedback loops positioned along the length of the heat transfer section, which enable the resulting fuel combustion efficiency to be increased by inducing a swirl flow and intensive recirculation of fluid along the length of the heat transfer section. Such improved fuel efficiency can advantageously reduce environmentally damaging emissions. Further, such apparatus may be used in converting thermal energy into electric power, can be used in generating steam, and / or can be utilized as part of a transportation engine with high thermal efficiency.

Problems solved by technology

Nevertheless, the fuel was substantially combusted “burnt,” and the carbon monoxide content and nitric oxide of the exhaust was found to be extremely low.
Dilution of the combustion air can reduce the oxygen content of the oxidizer, which decreases temperature fluctuations in the combustion chamber as well as the mean temperature, hence, a resultantly low amount of nitric oxide emission.
This has resulted in a glut in the market for glycerol.
Accordingly, rather than being able to sell the glycerol, many companies have to pay for its disposal.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Apparatus and Methods For Providing Uniformly Volume Distributed Combustion of Fuel
  • Apparatus and Methods For Providing Uniformly Volume Distributed Combustion of Fuel
  • Apparatus and Methods For Providing Uniformly Volume Distributed Combustion of Fuel

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0042]The present invention will now be described more fully hereinafter with reference to the accompanying drawings, which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.

[0043]FIGS. 1A-11 illustrate a system 30 including combustor apparatus 31 and methods which improve upon the vortex combustion chamber and precombustion chamber of the Jirnov engine described in U.S. Pat. No. 5,839,270 by Jirnov et al., titled “Sliding-Blade Rotary Air-Heat Engine with Isothermal Compression of Air,” to more efficiently accommodate use of more viscous fuels. According to various embodiments of the present invention, the combustor apparatus...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A combustor apparatus and method for the combustion of viscous fuels are provided. The combustor apparatus can include a precombustion chamber particularly adapted to heat and at least partially combust a heavy primary fuel, and a main combustion chamber adapted to combust the primary fuel uniformly through the main combustion chamber (in flameless mode). The precombustion chamber can include at least one air injection inlet port positioned to induce a first stage vortex in the main body portion of the housing of the precombustion chamber. Further, the precombustion chamber can be interfaced with a main combustion chamber to induce a second stage vortex within the main combustion chamber. The main combustion chamber can have an extended axial length in order to accommodate heavier fuels that require additional time to sufficiently combust (oxidize) within the combustion chamber.

Description

RELATED APPLICATIONS[0001]This non-provisional application claims priority to and the benefit of U.S. Patent Application No. 61 / 176,006, filed May 6, 2009, titled “Apparatus and Methods for Providing Uniformly Volume Distributed Combustion of Fuel,” incorporated herein by reference in its entirety.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention relates to fuel combustion processes and apparatus, and specifically to apparatus for providing uniformly volume distributed combustion and related methods.[0004]2. Description of Related Art[0005]It was arguably not until the late 1970s and early 1980s, as a result of the first and the second energy crisis, that research and development activities began to seriously focus on improving energy efficiency. Similarly, it has only been since until after such time period that industry has truly recognized the need for eliminating noxious pollutants such as nitrogen oxides, mostly due to concerns over human hea...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): F23G5/027F23D11/36F23D11/10F23G5/16
CPCF23C5/32Y02E20/342F23C2900/99001F23C6/04Y02E20/34
Inventor BORISSOV, ANATOLI
Owner GENERAL VORTEX ENERGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products