Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for Fabricating Array-Molded Package-on-Package

a technology of array-molded packages and integrated circuits, applied in semiconductor devices, semiconductor/solid-state device details, electrical apparatus, etc., can solve the problems of increasing product warpage problems, reducing product thickness, and no longer being acceptable in recent applications, so as to improve testability and thus yield, and reduce cost and simplify the effect of approach

Inactive Publication Date: 2011-07-07
TEXAS INSTR INC
View PDF7 Cites 11 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This approach results in package-on-package devices with excellent electrical performance, mechanical stability, and high reliability, reducing warpage issues and shortening the time-to-market for innovative products by simplifying the fabrication process and improving testability.

Problems solved by technology

This simple approach, however, is no longer acceptable for the recent applications especially for hand-held wireless equipments, since these applications place new, stringent constraints on the size and volume of semiconductor components used for these applications.
This trend to reduce product thickness initiated an increasing tendency to have product warpage problems, especially in thin assemblies, caused by the mismatch in the coefficients of thermal expansion (CTE) between the semiconductor chip, the plastic substrates, the molding compound, the solder balls, and the printed circuit board.
Warpage can lead to some of the most debilitating problems encountered by semiconductor assemblies such as the fracture and separation of solder joints, or the separation of materials followed by moisture ingress.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for Fabricating Array-Molded Package-on-Package
  • Method for Fabricating Array-Molded Package-on-Package
  • Method for Fabricating Array-Molded Package-on-Package

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0033]FIGS. 1A through 7 illustrate schematically the steps of one embodiment of the present invention, a method for array-molding semiconductor devices. The steps shown in FIGS. 1A and 1B show the assembly of a semiconductor chip on a substrate by wire bonding (FIG. 1A) and by flip-chip technology (FIG. 1B); FIG. 1C exemplifies a portion of an array of chips assembled by flip-chip. A sheet-like substrate 101 with insulating core (for example, plastic, glass-fiber reinforced, ceramic) is integral with two or more patterned layers of conductive lines and conductive vias 111 (preferably copper) and contact pads in pad locations. Lines 110 do not reach beyond the boundaries of substrate 101. Substrate 101 has a first surface 101a and a second surface 101b, and a preferred thickness range from 0.2 to 0.5 mm. The first surface 101a includes chip assembly sites 102 and contact pads 103 in pad locations. The metal of the contact pads is preferably copper with a solderable surface (for exam...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An improved semiconductor device package is manufactured by attaching semiconductor chips (130) on an insulating substrate (101) having contact pads (103). A mold is provided, which has a top portion (210) with metal protrusions (202) at locations matching the pad locations. The protrusions are shaped as truncated cones. The substrate and the chips are loaded onto the bottom mold portion (310); the mold is closed by clamping the top portion onto the bottom portion so that the protrusions approach the contact pads. Encapsulation compound is introduced into the cavity and the protrusions create apertures through the encapsulation compound towards the pad locations.

Description

[0001]This is a divisional application of application Ser. No. 11 / 750,757 filed May 18, 2007, the contents of which are herein incorporated in its entirety.FIELD OF THE INVENTION[0002]The present invention is related in general to the field of semiconductor devices and processes and more specifically to the structure and fabrication method of low-profile, vertically integrated package-on-package integrated circuit assemblies.DESCRIPTION OF THE RELATED ART[0003]The thickness of today's semiconductor package-on-package products is the sum of the thicknesses of the semiconductor chips, electric interconnections, and encapsulations, which are used in the individual devices constituting the building-blocks of the products. This simple approach, however, is no longer acceptable for the recent applications especially for hand-held wireless equipments, since these applications place new, stringent constraints on the size and volume of semiconductor components used for these applications.[00...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): H01L21/82H01L21/56H01L21/782
CPCH01L21/561H01L21/565H01L23/49805H01L23/49816H01L24/81H01L24/97H01L25/105H01L2224/13144H01L2224/13147H01L2224/16H01L2224/32225H01L2224/48091H01L2224/48227H01L2224/48465H01L2224/48472H01L2224/73265H01L2224/81801H01L2224/97H01L2924/01029H01L2924/01032H01L2924/01046H01L2924/01079H01L2924/01082H01L2924/07802H01L2924/09701H01L2924/15311H01L2924/15331H01L24/48H01L2924/01033H01L2924/01087H01L2924/014H01L21/782H01L2924/3511H01L2225/1023H01L2225/1058H01L2224/16225H01L24/96H01L2224/83H01L2224/85H01L2224/81H01L2924/00014H01L2924/00H01L2924/00012H01L2924/181H01L2924/12042H01L24/73H01L2924/14H01L2224/0558H01L2224/05009H01L2224/0557H01L2224/05001H01L2224/05147H01L2224/05644H01L2224/05664H01L2924/1815H01L2224/05571H01L2224/05099H01L2224/45099H01L2224/45015H01L2924/207
Inventor GERBER, MARK A.WALTER, DAVID N.
Owner TEXAS INSTR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products