Fertilizers containing animal nutrient core packet
a technology of animal nutrient core and fertilizer, which is applied in the field of fertilizer compositions, can solve the problems of increased infant mortality, reduced mean birth weight, and reduced nutrient content of fertilizer core, so as to reduce the deficiency of human/domesticated animal diet, increase the amount of crops containing nutrients, and eliminate the effect of deficiency
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Product NP-3, NP-4, and NP-5
[0042]Samples were produced containing 1, 3, and 5% iron from iron sulfate core packet. Iron sulfate crystals were screened to a pre-determined size prior to being over-coated with urea. Sample NP-3 contained 5% iron was produced by screening the iron sulfate crystals to 1.7 to 2.0 mm. Sample NP-4 contained 3% iron was produced by screening the iron sulfate crystals to 1.4 to 1.7 mm. Sample NP-5 contained 1% iron was produced by screening the iron sulfate crystals to 1.0 to 1.2 mm.
[0043]Approximately 1 pound of each core material was placed inside the drum to form a falling curtain. The urea over-coating drum was 20″ in diameter, 5″ wide, 2″ deep, with forty-1″ lifting flights mounted 1½″ apart inside the drum to assist in forming a falling curtain during melt spray granulation. The stainless steel granulation drum was mounted on a variable speed base. The drum speed during granulation was 35-40 rpm. Industrial grade urea was melted and sprayed to overcoa...
example 2
NP-6
[0044]A sample was produced containing 1% iron from an iron EDTA (ethylene diamine tetra acetic acid) core packet. Iron EDTA nutrient cores were produced by first granulating powdered iron EDTA with 6-7% corn syrup in a lab scale pan granulator. Sample NP-6 contained 1% iron that was produced by screening the granulated core to a particle size of 1.0 to 1.4 mm.
[0045]Approximately 1 pound of nutrient core material was placed inside the drum to form a falling curtain. The urea over-coating drum was 20″ in diameter, 5″ wide, 2″ deep, with forty-1″ lifting flights mounted 1½″ apart inside the drum to assist in forming a falling curtain during melt spray granulation. The stainless steel granulation drum was mounted on a variable speed base. The drum speed during granulation was 35-40 rpm. Industrial grade urea was melted and sprayed to overcoat the core packet and produce a final product size of 2.8 mm.
example 3
NP-7
[0046]A sample was produced containing 1% zinc from a zinc EDTA core packet. Zinc EDTA nutrient cores were produced by first granulating powdered zinc EDTA with 6-7% corn syrup in a lab scale pan granulator. Sample NP-7 contained 1% zinc that was produced by screening the granulated core to a particle size of 1.0 to 1.4 mm.
[0047]Approximately 1 pound of core material was placed inside the drum to form a falling curtain. The urea over-coating drum was 20″ in diameter, 5″ wide, 2″ deep, with forty-1″ lifting flights mounted 1½″ apart inside the drum to assist in forming a falling curtain during melt spray granulation. The stainless steel granulation drum was mounted on a variable speed base. The drum speed during granulation was 35-40 rpm. Industrial grade urea was melted and sprayed to overcoat the core packet and produce a final product size of 2.8 mm.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com