Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Pretreatment of fats and oils in the production of biofuels

a technology of biofuels and fats, applied in the direction of biofuels, fatty-oils/fat refining, fuels, etc., can solve the problems of shortening the useful life of feedstocks, reducing the ability to catalytically convert them into hydrocarbons, and so as to reduce the activity of hydroprocessing and shorten the useful life , the effect of increasing the overall cost of biofuel production

Inactive Publication Date: 2012-07-05
UOP LLC
View PDF2 Cites 40 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007]The present invention is associated with the discovery of important benefits that result from the treatment of feedstocks comprising a fatty acid- or triglyceride-containing component, in order to remove contaminants that have been found to be detrimental in the conversion of such feedstocks to hydrocarbons, and especially biofuel fractions such as diesel or aviation biofuels. Without being bound by theory, contaminants contributing to the presence of trace elements in animal fats and / or plant oils, as components of feedstocks, hinder the ability to catalytically convert these feedstocks to hydrocarbons using hydroprocessing. For example, certain elements and compounds containing these elements (e.g., phosphorous and phosphorous-containing compounds) poison or reduce the activity of hydroprocessing catalysts, thereby shortening their useful life and consequently increasing the overall cost of biofuel production. Treating methods to reduce certain contaminants of the fatty acid- or triglyceride-containing component (and therefore contaminants of the feedstock), to the greatest extent possible, therefore provide important commercial advantages.
[0010]Further embodiments of the present invention are directed to hydroprocessed biofuels made according to these methods (e.g., using fractionation to recover the biofuel from a hydroprocessed product), in addition to biofuel compositions made by blending the hydroprocessed biofuel with a petroleum-derived fuel (e.g., present in the composition in an amount from about 1% to about 99% by weight). The biofuels, and fuel compositions comprising these biofuels, advantageously exhibit greatly reduced greenhouse gas (GHG) emissions, compared to their petroleum-derived counterparts, based on a lifecycle assessment (LCA) up to and including the ultimate combustion of the fuel composition by the end user. For vegetable oils and animal fats, the GHG emissions associated with obtaining these feedstock components are in many cases considered negligible, as these biofuel sources are otherwise normally waste products of foods already produced for human and animal consumption. The biofuels and biofuel compositions have suitable characteristics, in terms of overall makeup (e.g., relatively large, minimally required, amounts of hydrocarbons within a particular boiling range) and in terms of quality (e.g., relatively small, maximally allowed, amounts of thermally unstable compounds such as oxygenates) for use as a fuel composition or a fuel composition blending component.

Problems solved by technology

Without being bound by theory, contaminants contributing to the presence of trace elements in animal fats and / or plant oils, as components of feedstocks, hinder the ability to catalytically convert these feedstocks to hydrocarbons using hydroprocessing.
For example, certain elements and compounds containing these elements (e.g., phosphorous and phosphorous-containing compounds) poison or reduce the activity of hydroprocessing catalysts, thereby shortening their useful life and consequently increasing the overall cost of biofuel production.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Pretreatment of fats and oils in the production of biofuels

Examples

Experimental program
Comparison scheme
Effect test

example

[0032]A representative plant oil, namely camelina oil, as a feedstock for biofuel production, was analyzed for trace metals by inductively coupled plasma atomic emission spectrometry (ICP-AES). Three jars were then filled with 100 ml each of this feedstock, and 10 g of a different ion exchange resin was added to each jar. In particular, these resins were (1) a strong base anion exchange resin having quaternary ammonium functional groups in the hydroxide form, (2) a weak base anion exchange resin having amine functional groups, and (3) a strong acid cation exchange resin having sulfonic acid functional groups in the hydrogen form. The jars containing resin and camelina oil were subsequently sealed and shaken manually for 5 seconds, before being placed onto a mechanical shaker. After 3 days of mechanical shaking, the resulting, treated oil samples were filtered from the resins and submitted for the same ICP-AES analysis. The feedstock analyses, both prior to and after treatment, as we...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Methods are disclosed for the treatment of feedstocks comprising a fatty acid- or triglyceride-containing component to remove contaminants that are detrimental to the conversion of such feedstocks to hydrocarbons, and especially biofuel fractions such as diesel or aviation biofuels. Contaminants contributing to the presence of trace elements in animal fats and / or plant oils, as components of feedstocks, hinder the ability to catalytically convert these feedstocks, for example by hydroprocessing, to biofuels.

Description

STATEMENT OF PRIORITY[0001]This application claims priority to U.S. Provisional Application No. 61 / 428,640 which was filed on Dec. 30, 2010, the contents of which are hereby incorporated by reference in its entirety.FIELD OF THE INVENTION[0002]Aspects of the invention relate to the pretreatment of feedstocks comprising a fatty acid- or triglyceride-containing component (e.g., an animal fats or a plant oil) to remove contaminants such as phosphorous that are detrimental to hydroprocessing operations used to convert such feedstocks to hydrocarbon-containing biofuels (e.g., a diesel biofuel or an aviation biofuel).DESCRIPTION OF RELATED ART[0003]Environmental concerns over fossil fuel greenhouse gas (GHG) emissions have led to an increasing emphasis on renewable energy sources. The production of biofuels is expanding at a rapid pace worldwide as a result of commitments to GHG reduction, including the climate agreement at Kyoto and associated European Union directives. Increasing petrol...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C10L1/19
CPCC10L1/026C10G2300/1011C11B3/008Y02T50/678C11B3/06C11B3/10Y02E50/13C11B3/04Y02E50/10Y02P30/20
Inventor BRANDVOLD, TIMOTHY A.ELLIG, DANIEL L.LUPTON, FRANCIS STEPHEN
Owner UOP LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products