Be-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof

An aluminum alloy material and heat-resistant technology, which is applied in the field of aluminum alloy materials with microalloying elements and rare earth elements and their preparation, can solve the problems of reducing the quasi-solid temperature range of the alloy, poor quality, and large hot cracking tendency.

Active Publication Date: 2011-04-20
GUIZHOU HUAKE ALUMINUM MATERIAL ENG TECH RES
View PDF5 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0034] The technical problem to be solved by the present invention is to solve the existing problems in the field of high-strength aluminum alloys, such as extensive melt treatment process, poor quality, large thermal cracking tendency, poor casting performance, low product yield, low high-temperature strength, waste materials and slag recycling. For technical problems such as poor usability, guided by high-quality melt, solid solution and phase diagram theory, using C element as a high-efficiency modifier, by optimizing the alloy main element Cu, Mn and rare earth element formula, reducing the quasi-solid phase temperature range of the alloy, and solving the problem of casting The general problem of high thermal cracking tendency and low high-temperature strength of products (including instantaneous strength and durable strength); the low-cost multi-element microalloying element formula is preferred for the cultivation and fine-graining of high-temperature phases and strengthening phases in solid solutions Create material basic conditions; and optimize smelting and heat treatment technology to realize sufficient cultivation of high-temperature phase and strengthening phase in solid solution and full play of fine-graining effect

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Be-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof
  • Be-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof
  • Be-RE high-strength heat-resistant aluminium alloy material with C as modifier and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0115] Example 1: Cu-1.0%, characteristic microalloying element-Be, basic microalloying rare earth element-La, efficient modification element-C

[0116] (1) Weigh the various alloying elements required according to the ingredient calculation table, as follows.

[0117]

[0118] (2) Add an appropriate amount of aluminum ingots to the melting furnace, heat it to melt it completely and keep it warm at 700-800°C; in order to prevent the melt from inhaling too much air, the melting process should be as short as possible in a closed environment Finish.

[0119] (3) Add Al-Mn, Al-Ti, Al-Be, Al-Zr master alloys or mixed metal additives (including salt compounds) according to the formula ratio, and then add Cu pure metal and Al-Cd intermediate Alloy or mixed metal additives, then add C and rare earth element La, and stir evenly.

[0120] Mixed metal additives refer to cake-shaped or massive non-sintered powder metallurgy products for adding and adjusting alloy components, includin...

Embodiment 2

[0126] Example 2: Cu-4.2%, characteristic microalloying element-Be, basic microalloying rare earth element-La, Ce mixed rare earth, high-efficiency modification element-C

[0127] (1) Weigh the various alloying elements required according to the ingredient calculation table, as follows.

[0128]

[0129]

[0130] (2) Add an appropriate amount of aluminum ingots to the melting furnace, heat it to melt it completely and keep it warm at 700-800°C; in order to prevent the melt from inhaling too much air, the melting process should be as short as possible in a closed environment Finish.

[0131] (3) Add Al-Mn, Al-Ti, Al-Be, Al-Zr master alloys or mixed metal additives (including salt compounds) according to the formula ratio, and then add Cu pure metal and Al-Cd intermediate Alloy or mixed metal additives, then add C and rare earth elements La, Ce and mixed rare earth, and stir evenly.

[0132] Mixed metal additives refer to cake-shaped or massive non-sintered powder metall...

Embodiment 3

[0138] Example 3: Cu-6.01%, characteristic microalloying element-Be, basic microalloying rare earth element-La, Ce, Pr mixed rare earth, high-efficiency modification element-C

[0139] (1) Weigh the various alloying elements required according to the ingredient calculation table, as follows.

[0140]

[0141] (2) Add an appropriate amount of aluminum ingots to the melting furnace, heat it to melt it completely and keep it warm at 700-800°C; in order to prevent the melt from inhaling too much air, the melting process should be as short as possible in a closed environment Finish.

[0142] (3) Add Al-Mn, Al-Ti, Al-Be, Al-Zr master alloys or mixed metal additives (including salt compounds) according to the formula ratio, and then add Cu pure metal and Al-Cd intermediate Alloy or mixed metal additives, then add C and rare earth elements La, Ce, Pr mixed rare earth, and stir evenly.

[0143] Mixed metal additives refer to cake-shaped or massive non-sintered powder metallurgy pr...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
tensile strengthaaaaaaaaaa
tensile strengthaaaaaaaaaa
tensile strengthaaaaaaaaaa
Login to view more

Abstract

The invention discloses a high-strength heat-resistant aluminium alloy material and a preparation method thereof. The aluminium alloy material comprises the following components by weight: 1.0-10.0% of Cu, 0.05-1.5% of Mn, 0.01-0.5% of Cd, 0.01-0.5% of Ti, 0.0001-0.15% of C, 0.01-1.0% of Zr, 0.001-0.1% of Be, 0.05-5% of RE and the balance Al. The invention finally develops the high-strength heat-resistant aluminium alloy material by taking the high-quality melt, solid solution and phase diagram theory as the guidance, taking C as the efficient modifier, giving preference to the main alloying elements Cu, Mn and RE as formulas, reducing the temperature range of the quasi-solid phase of the alloys, solving the problems of great hot cracking tendency, low high temperature strength of the products and the like during casting and giving preference to multiple microalloying elements with low cost as formulas to create basic material conditions for cultivation and grain refining functions ofthe high temperature phase and strengthening phase in the solid solution.

Description

technical field [0001] The invention relates to an aluminum alloy material and a preparation method thereof, in particular to an aluminum alloy material containing microalloying elements and rare earth elements and a preparation method thereof. Background technique [0002] Aluminum alloy is a relatively young metal material, which only began to be used industrially in the early 20th century. During World War II, aluminum was mainly used in the manufacture of military aircraft. After the war, due to the sharp decrease in the demand for aluminum in the military industry, the aluminum industry began to develop civilian aluminum alloys, expanding its application scope from the aviation industry to the construction industry, container packaging industry, transportation industry, electric power and electronics industry, Various sectors of the national economy such as machinery manufacturing and petrochemicals are applied to people's daily lives. At present, aluminum is used in ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): C22C21/12C22C21/00C22C1/02C22C1/03C22C1/06C22F1/04C22F1/057
Inventor 车云张中可门三泉陈新孟
Owner GUIZHOU HUAKE ALUMINUM MATERIAL ENG TECH RES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products