A kind of highly stable modified Y-type molecular sieve and preparation method thereof
A molecular sieve and modification technology, applied in the direction of molecular sieve catalysts, chemical instruments and methods, crystalline aluminosilicate zeolites, etc., can solve the problems of inability to obtain silicon-aluminum ratio, low lattice collapse temperature, crystallinity retention rate and specific surface area retention Low rate and other issues
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment approach
[0033] The preparation method of the modified Y-type molecular sieve provided by the invention, a kind of embodiment comprises the following steps:
[0034] (1) carry out ion exchange reaction with NaY molecular sieve (also claiming NaY zeolite) and rare earth solution, filter, wash, obtain the Y-type molecular sieve of the conventional unit cell size containing rare earth that sodium oxide content reduces; Said ion exchange is usually stirred, Exchange at a temperature of 15-95°C, preferably 65-95°C, for 30-120 minutes;
[0035] (2) The Y-type molecular sieve with the rare earth-containing conventional unit cell size whose sodium oxide content is reduced is roasted for 4.5 to 7 hours at a temperature of 350 to 480° C. in an atmosphere containing 30 to 90% by volume of water vapor, and dried to obtain water A Y-type molecular sieve with a reduced unit cell constant content of less than 1% by weight; the unit cell constant of the Y-type molecular sieve with a reduced unit cell ...
Embodiment 1
[0044] Get 2000 grams of NaY molecular sieves (calculated on a dry basis) and add them to 20 liters of decationized aqueous solution and stir to make them evenly mixed. Add 600ml of RE(NO 3 ) 3 Solution (rare earth solution concentration is RE 2 o 3 Calculated as 319g / L), stirred, heated to 90-95°C and kept for 1 hour, then filtered, washed, and the filter cake was dried at 120°C to obtain a unit cell constant of 2.471nm and a sodium oxide content of 7.0% by weight. 2 o 3 A Y-type molecular sieve with a total rare earth content of 8.8% by weight is then calcined for 6 hours at a temperature of 390°C in an atmosphere containing 50% by volume of water vapor and 50% by volume of air to obtain a Y-type molecular sieve with a unit cell constant of 2.455nm. After that, carry out Drying process, so that its water content is less than 1% by weight, and then according to SiCl 4 : Y-type molecular sieve (dry basis) = 0.5: 1 weight ratio, feed SiCl vaporized by heating 4 Gas, at a t...
Embodiment 2
[0047]Get 2000 grams of NaY molecular sieves (on a dry basis) and add them to 25 liters of decationized aqueous solution and stir to make them evenly mixed. Add 800 ml of RECl 3 solution (in RE 2 o 3 The calculated solution concentration is: 319g / L), stirred, heated up to 90-95°C for 1 hour, then filtered, washed, and the filter cake was dried at 120°C to obtain a unit cell constant of 2.471nm and a sodium oxide content of 5.5% by weight , with RE 2 o 3 A Y-type molecular sieve with a total rare earth content of 11.3% by weight is then calcined at a temperature of 450°C and 80% water vapor for 5.5 hours to obtain a Y-type molecular sieve with a unit cell constant of 2.461nm, and then dried to reduce its water content at 1 wt%, then follow SiCl 4 : Y-type zeolite = 0.6:1 weight ratio, feed SiCl vaporized by heating 4 The gas was reacted for 1.5 hours at a temperature of 480° C., and then washed with 20 liters of deionized water, and then filtered to obtain a modified Y-typ...
PUM
Property | Measurement | Unit |
---|---|---|
pore size | aaaaa | aaaaa |
specific surface area | aaaaa | aaaaa |
crystallinity | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
![application no application](https://static-eureka.patsnap.com/ssr/23.2.0/_nuxt/application.06fe782c.png)
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com