Method for breeding tomatoes having reduced water content and product of the method

a technology of tomato and water content, which is applied in the field of method for breeding tomatoes having reduced water content and product of the method, can solve the problems of general degradation of tomatoes, energy consumption, and use of drying ovens, and achieve the effect of reducing water content and water conten

Inactive Publication Date: 2007-01-25
STATE OF ISRAEL MINIST OF AGRI & RURAL DEV AGRI RES ORG A R O VOLCANI CENT THE
View PDF4 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009] The present invention seeks to provide a method for breeding tomatoes having fruit that naturally dehydrate while still attached to the tomato plant and thus have a reduced water content, and to tomatoes having reduced water content and to products of the method.
[0010] The development of tomato varieties with the trait of naturally dehydrating while still attached to the vine, without the accompaniment of degradative processes leading to fruit breakdown is highly valuable to the various components of the tomato industry. It can contribute to reduction of processing costs and energy expenditures in the production of pastes, sauces and ketchups. It can contribute to the production of high quality dried and semi-dried (raisin-type) tomato products. It can contribute to the improvement of tomato fruit transport since the volume of transported material will be decreased. It can improve the storage ability of the tomato fruit since reduced water content will be accompanied by increased soluble solids concentration which contributes to the resistance to microbial spoilage.
[0011] There is thus provided in accordance with a preferred embodiment of the present invention a method for breeding tomato plants that produce tomatoes with reduced fruit water content including the steps of crossing at least one Lycopersicon esculentum plant with a Lycopersicon spp. to produce hybrid seed, collecting the first generation of hybrid seeds, growing plants from the first generation of hybrid seeds, pollinating the plants of the most recent hybrid generation, collecting the seeds produced by the most recent hybrid generation, growing plants from the seeds of the most recent hybrid generation, allowing plants to remain on the vine past the point of normal ripening, and screening for reduced fruit water content as indicated by extended preservation of the ripe fruit and wrinkling of the fruit skin.

Problems solved by technology

However, tomatoes will generally undergo degradation if they remain on the vine after ripening.
There are disadvantages to sun-drying since it depends on weather conditions and inclement weather leads to losses.
Similarly, there are disadvantages to the use of drying ovens as these are energy consuming.
Both sun drying and oven drying may lead to losses in food quality.
Furthermore, the necessity to cut the tomato fruit in half before the drying process does not allow for the production of whole dried tomato fruit.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0026] Plants of the L. esculentum breeding line 1630 (a Volcani Institute male sterile breeding line, used to simplify the production of the interspecific hybrid) were pollinated with pollen of the wild species L. hirsutum (LA1777). Hybrid F1 plants were grown and allowed to self-pollinate, generating F2 seed. F2 seed were sown and about 350 plants were grown in a screenhouse and allowed to self-pollinate. Ripe fruit from each individual plant that produced fruit were individually analyzed for soluble solids (refractometrically) to insure the lines also included the characteristic of high soluble solids. Only 25 of the interspecific F2 plants freely produced fruit. Three F2 plants were selected based on their high sugar content (Brix in excess of 10) when ripe. For example, fruit of F2-82 had 71 mg soluble sugar, composed of sucrose, glucose and fructose, per gram fresh weight of fruit, as determined by the method described herein below. F3 seeds were sown and ten plants of each of...

example 2

[0028] Pollen from one plant (F2-82) which was characterized by high soluble sugar level in the mature fruit (71 mg soluble sugar, composed of sucrose, glucose and fructose, per gram fresh weight of fruit) was used to pollinate two standard, industry type tomatoes (breeding lines A701 and 699) for the production of two backcross-F1 (BC-F1) populations. One-hundred BC-F2 plants from each of the two hybrids were grown and the presence of signs of fruit dehydration, evidenced by wrinkling of the fruit skin, were seen in fruit of plants from these F2 populations. This shows that even at early stages of a selection program, the trait can be selected for without large populations of plants.

experiment 3

[0029] Fruit of progeny of advanced lines derived from the lines described in experiment 1, that showed the characteristic to dehydrate on the vine, as evidenced by the wrinkling of the fruit were harvested and the juice pressed and Brix of the expressed juice was measured by a digital refractometer (Atago model X-1). The following table shows characteristic Brix values of some of the partially dehydrated tomato fruit (cherry size, approx. 15 g). Fruit were harvested when partially wrinkled but not fully dehydrated. The results of this experiment indicate that the trait of fruit dehydration and increase in Brix value is a selectable inherited trait. The parental selection (self of 1465-3) was partially dehydrated as was the F1 hybrid between 1465-3 and the cherry cultivar F139. This indicates that the trait is at least partially dominant in its inheritance pattern. Similarly, 3 representative plant selections from the F2 population (1730) derived from the self of the F1 (1465-3×F139...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method for breeding tomato plants that produce tomatoes with reduced fruit water content including the steps of crossing at least one Lycopersicon esculentum plant with a Lycopersicon spp. to produce hybrid seed, collecting the first generation of hybrid seeds, growing plants from the first generation of hybrid seeds, pollinating the plants of the most recent hybrid generation, collecting the seeds produced by the most recent hybrid generation, growing plants from the seeds of the most recent hybrid generation, allowing plants to remain on the vine past the point of normal ripening, and screening for reduced fruit water content as indicated by extended preservation of the ripe fruit and wrinkling of the fruit skin.

Description

FIELD OF THE INVENTION [0001] The present invention relates to a method for breeding tomatoes having reduced water content and / or with the trait of drying while still attached to the vine, and to tomatoes having reduced water content and to products of the method. BACKGROUND OF THE INVENTION [0002] Dehydrated tomato products comprise an important portion of the tomato industry. The production of tomato pastes, ketchup and other processed tomato products is dependent on the energy-requiring steps of dehydration. The production of “sun-dried” tomato products consists of dehydrating cut tomato fruit either in the sun or in drying ovens. [0003] Dry matter content of mature tomato fruit can range from approximately 5-10% (Davies, J. N. and Hobson, G. E. 1981. The constituents of tomato fruit—the influence of environment, nutrition and genotype. CRC Critical Reviews in Food Sci and Nutr. 15:205-280), depending largely on fruit size. Generally, processing tomato cultivars produce mature fr...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A01H5/00A01H1/02A01H1/04A01H5/08A23L19/00A23L27/60
CPCA01H1/04A01H5/10A01H1/02A23V2002/00A23L1/2128A23L1/243A01H5/08A23L19/09A23L27/63A01H6/825
Inventor SCHAFFER, ARTHUR A.
Owner STATE OF ISRAEL MINIST OF AGRI & RURAL DEV AGRI RES ORG A R O VOLCANI CENT THE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products