Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for in situ repair of injured, damaged, diseased or aged articular cartilage

a technology of articular cartilage and in situ repair, which is applied in the field of treatment of injured, damaged, diseased or aged articular cartilage, and can solve the problems of debilitating disability, affecting mobility, and damage to the articular cartilage of active individuals and older generation adults

Inactive Publication Date: 2008-01-10
HISTOGENICS +1
View PDF9 Cites 21 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0026] d) depositing a space-holding thermo-reversible gel (SHTG) or TRGH into a lesion or into a cavity formed above the first sealant layer thereby permitting sufficient time for growth and differentiation of ex vivo cultured neo-cartilage, said space holding thermo-reversible gel (SHTG) deposited into said cavity as a sol at temperatures between about 5 to about 25° C., wherein within said cavity and at the body temperature said SHTG converts from the fluidic sol into a solid gel and in this form SHTG holds the space for subsequent introduction of the neo-cartilage cultured ex vivo, and provides protection against cell and blood-borne agents migration into the cavity from the subchondral space and from the synovial capsule and wherein its presence further provides a substrate for and promotes in situ formation of a de novo superficial cartilage layer covering the cartilage lesion;
[0054] Still another aspect of the current invention is a method for generation and maintaining integrity of the lesion cavity for the introduction of neo-cartilage, a neo-cartilage gel, a neo-cartilage suspension or neo-cartilage construct from a synovial capsule and for blocking the migration of subchondral and synovial cells and cell and blood products into said cavity and for providing a substrate for a formation of superficial cartilage layer overgrowing the lesion by introducing a biologically acceptable space-holding thermo-reversible gel (SHTG) into a cleaned lesion for a duration of culturing autologous chondrocytes into neo-cartilage before introducing said neo-cartilage or neo-cartilage construct or suspension into the lesion.

Problems solved by technology

Damage to the articular cartilage which occurs in active individuals and older generation adults as a result of either acute or repetitive traumatic injury or aging is quite common.
Such damaged cartilage leads to pain, affects mobility and results in debilitating disability.
For example, severe and chronic forms of knee joint cartilage damage can lead to greater deterioration of the joint cartilage and may eventually lead to a total knee joint replacement.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for in situ repair of injured, damaged, diseased or aged articular cartilage
  • Method for in situ repair of injured, damaged, diseased or aged articular cartilage
  • Method for in situ repair of injured, damaged, diseased or aged articular cartilage

Examples

Experimental program
Comparison scheme
Effect test

example 1

Isolation of Chondrocytes from Source Tissue

[0362] This example describes the procedure used for isolation of chondrocytes from swine cartilage.

[0363] Chondrocytes were enzymatically isolated from cartilage harvested under sterile conditions from the hind limbs of 6-month old swine. The femur was detached from the tibia and the trachea head exposed. Strips of cartilage were removed from the trachea using a surgical blade.

[0364] The cartilage was minced, digested in a 0.15% collagenase type I solution in DMEM / Nutrient Mixture F-12 (DMEM / F-12) 1:1 mixture with 1% penicillin-streptomycin (P / S) and gently rotated for 18 hours at 37° C. Chondrocytes were collected and rinsed twice by centrifugation at 1500 rpm for 5 min. Chondrocytes were re-suspended in DMEM / F-12 containing 1% penicillin-streptomysin and 10% FBS.

[0365] Chondrocytes were expanded for about 5 days at 37° C.

example 2

The Production of Human Neo-Cartilage Construct

[0366] This example describes conditions for production of neo-cartilage for human use.

[0367] The patient undergoes arthroscopic biopsy of a small (200-500 mg) piece of healthy cartilage from the ipsilateral knee. The biopsy is taken from the non-weight bearing portion of the femoral condyle or from the femoral notch as deemed most appropriate for the patient. The biopsy sample is placed into a sterile, non-cytotoxic, non-pyrogenic specimen container which is packaged and shipped to the laboratory.

[0368] At the laboratory the biopsy sample is examined against acceptance criteria and then transferred to the chondrocyte isolation and expansion area. Samples from the biopsy specimen transport buffer are tested for sterility and for mycoplasma. The expanded chondrocytes are suspended in VITROGEN® gellable collagen solution, commercially available from Cohesion Corp., Palo Alto, Calif. A pre-formed collagen sponge (22×22 mm square and 2-4...

example 3

Preparation of Support Matrices

[0371] This example illustrates preparation of the cellular support matrix, also called the TESS matrix.

[0372] 300 grams of a 1% aqueous atelocollagen solution (VITROGEN®), maintained at pH 3.0, is poured into a 10×20 cm tray. This tray is then placed in a 5 liter container. A 50 ml open container containing 30 ml of a 3% aqueous ammonia solution is then placed next to the tray, in the 5 liter chamber, containing 300 grams of said 1% aqueous solution of atelocollagen. The 5 liter container containing the open trays of atelocollagen and ammonia is then sealed and left to stand at room temperature for 12 hours. During this period the ammonia gas, released from the open container of aqueous ammonia and confined within the sealed 5 liter container, is reacted with the aqueous atelocollagen resulting in gelling said aqueous solution of atelocollagen.

[0373] The collagenous gel is then washed with water overnight and, subsequently, freeze-dried to yield a ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
frequencyaaaaaaaaaa
pressureaaaaaaaaaa
temperatureaaaaaaaaaa
Login to View More

Abstract

A method for treatment of injured, damaged, diseased or aged articular cartilage using neo-cartilage constructs implanted into a joint cartilage lesion in situ. The implantation of the construct initiates and achieves incorporation of neo-cartilage into a native surrounding cartilage including a formation of a new superficial cartilage layer overgrowing and sealing the lesion in the joint cartilage.

Description

[0001] This application is a continuation-in-part application of Ser. No.: 10 / 104,677 filed on Mar. 22, 2002 and is based on and claims priority of the Provisional application Ser. No. 60 / 425,696 filed on Nov. 12, 2002 and Provisional application Ser. No. 60 / 427,627 filed on Nov. 18, 2002.BACKGROUND OF THE INVENTION [0002] 1. Field of Invention [0003] The current invention concerns a method for treatment of injured, damaged, diseased or aged articular cartilage using neo-cartilage constructs implanted into a joint cartilage lesion in situ. The method is particularly useful for repair and restoration of function of the injured, traumatized, aged or diseased cartilage. In particular, the invention concerns a method where the implantation of the construct of the invention initiates and achieves incorporation of neo-cartilage into a native surrounding cartilage including a formation of a new superficial cartilage layer overgrowing and eventually completely sealing the lesion in the join...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61F2/08A61F2/00A61K35/12A61L27/24A61L27/38A61L27/56C12N5/077
CPCA61F2310/00365A61K35/12C12N5/0655A61L2430/06A61L27/56A61L27/24A61L27/3633A61L27/3817A61L27/3843A61L27/3852A61L27/3895A61L27/38A61F2/28
Inventor MIZUNO, SHUICHIKUSANAGI, AKIHIKOTARRANT, LAURENCE J.B.TOKUNO, TOSHIMASASMITH, ROBERT LANE
Owner HISTOGENICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products