Formaldehyde free binder compositions with urea-aldehyde reaction products

a technology of urea-aldehyde and reaction products, which is applied in the field of formaldehyde-free binder compositions with urea-aldehyde reaction products, can solve the problems of increasing the use restriction of carbohydrate-containing binders, excessive particulates, and brittleness of many types of binders, so as to facilitate the curing of binder and formation, and reduce sugar

Inactive Publication Date: 2014-11-20
JOHNS MANVILLE CORP
View PDF3 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]The binder composition may be applied to a group of fibers to form an pre-cured amalgam of binder composition and fibers. The amalgam may then be exposed to curing conditions (e.g., heating) to facilitate the curing of the binder and formation of a fiber-containing composite. During the curing stage, the crosslinking agent crosslinks the reducing sugar to form a polymeric matrix that adheres the fibers together in the fiber-containing composite. Examples of these composites include fiber insulation (e.g., fiberglass insulation) for piping, ducts, buildings, and other construction applications.
[0007]Embodiments include binder compositions containing (1) a reducing sugar and (2) a reaction product of a urea compound and an aldehyde-containing compound. The binder composition may be applied to a group of fibers and exposed to curing conditions to form a fiber-containing composite of fibers bound by the cured binder.
[0008]A more specific embodiment of the binder composition may include dextrose as the reducing sugar, and 4,5-dihydroxyimidazolidin-2-one as the reaction product of a urea compound (in this case H2N—CO—NH2) and glyoxal (OHC—CHO). When the dextrose and 4,5-dihydroxyimidazolidin-2-one are exposed to binder curing conditions, the 4,5-dihydroxyimidazolidin-2-one crosslinks the dextrose (and polymerized forms of dextrose) to make the cured binder.
[0009]Embodiments further include fiber-containing composites containing woven or non-woven fibers and a cured binder formed from a binder composition that includes (1) reducing sugar and (2) a crosslinking agent that is a reaction product of a urea compound and an aldehyde-containing compound. The fibers may be one or more types of fibers chosen from glass fibers, mineral fibers, and organic polymer fibers (among others). Non-woven glass fibers may be included in composites for fiberglass insulation.
[0010]Embodiments still further include methods of binding fibers, where the methods include the step of applying a binder composition to a mat of woven or non-woven fibers, and then curing the binder composition applied to the fibers to make a fiber-containing composite. The binder composition may include a reducing sugar and a crosslinking agent formed as a reaction product between a urea compound and an aldehyde-containing compound, as described above.

Problems solved by technology

Formaldehyde is considered a probable human carcinogen, as well as an irritant and allergen, and its use is increasingly restricted in building products, textiles, upholstery, and other materials.
However, these formaldehyde-free binder compositions also make extensive use of non-renewable, petroleum-based ingredients.
However, many types of carbohydrate-containing binders tend to become brittle when cured and form excessive particulates when the insulation is folded or compressed.
Some carbohydrate-containing binders are also prone to accelerated degradation in humid environments and thus require additional conditioning and additives to improve their moisture / water resistance.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Formaldehyde free binder compositions with urea-aldehyde reaction products
  • Formaldehyde free binder compositions with urea-aldehyde reaction products
  • Formaldehyde free binder compositions with urea-aldehyde reaction products

Examples

Experimental program
Comparison scheme
Effect test

example 1a

Tensile Strength Testing of Dextrose Binder Composites

[0053]Comparative tensile strength tests were conducted on composites made with an exemplary dextrose / urea-glyoxal binder composition and composites made with a standard commercial polyacrylic binder composition. The dextrose / urea-glyoxal composition was prepared by mixing 60 g of urea, 145 g of a 40 wt % solution of glyoxal, at a temperature of 90° C. for about 120 minutes. The urea and glyoxal react to form crosslinking agents for the binder composition, including cyclic urea-glyoxal compounds (e.g., 4,5-dihydoxyimidazolidin-2-one). Next, 918 g of water and 989 g of dextrose monohydrate (900 g active) were added to the reacted urea-glyoxal solution to form the uncured binder composition for making the dogbone composite. To this solution was added 76.4 g ammonium sulfate as a catalyst. The uncured polyacrylic binder composition was made by mixing a commercial polyacrylic acid (QRXP-1765 acrylic resin from Dow Chemical) with trie...

example 1b

Tensile Strength Testing of Fructose / Dextrose Binder Composites

[0057]Additional tensile strength tests were conducted on composites made with exemplary binder compositions that included combinations of fructose and dextrose reacted with a urea-glyoxal crosslinking agent. A first fructose+dextrose / urea-glyoxal binder composition was prepared by mixing 60 g of urea, 145 g of a 40 wt % solution of glyoxal, at a temperature of 90° C. for about 120 minutes. The urea and glyoxal react to form crosslinking agents for the binder composition, including cyclic urea-glyoxal compounds (e.g., 4,5-dihydoxyimidazolidin-2-one). Next, 918 g of water and 989 g of 42 wt. % fructose and 55 wt. % dextrose monohydrate were added to the reacted urea-glyoxal solution to form the uncured binder composition for making the dogbone composite. To this solution was added 76.4 g ammonium sulfate as a catalyst. A second fructose+dextrose / urea-glyoxal binder composition was prepared using the same components and pr...

example 2

Preparation of an Exemplary Glass-Fiber Composites

[0058]A glass-fiber composite was made from a dextrose / urea-glyoxal binder composition and a nonwoven glass fiber mat. Preparation of the binder composition started by mixing 60 kg or urea into a 145 kg aqueous glyoxal solution (40 wt. % glyoxal (58 kg on dry basis)) at room temperature until the urea dissolved. The urea-glyoxal solution temperature was then increased to 80° C. and kept at 80-85° C. for 2 hours while stirring the solution at 500 rpm to facilitate the reaction of the urea and glyoxal. At the end of the reaction period, a 57 wt. % solution of the urea-glyoxal crosslinking agent was formed.

[0059]918 kg or water and 989 kg of dextrose monohydrate (900 kg active) were added to the crosslinking solution and the combined mixture was stirred until the dextrose dissolved. The mole ratio of urea:glyoxal:dextrose in the solution was 1:1:5. 76.4 kg of ammounium sulfate was added to the solution as a catalyst, and stirred until t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
densityaaaaaaaaaa
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

Fiber-containing composites are described that contain woven or non-woven fibers, and a cured binder formed from a binder composition that includes (1) a reducing sugar and (2) a crosslinking agent that includes a reaction product of a urea compound and a polycarbonyl compound. Exemplary reaction products for the crosslinking agent may include the reaction product of urea and an α,β-bicarbonyl compound or an α,γ-bicarbonyl compound. Exemplary fiber-containing composites may include fiberglass insulation.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS[0001]This application is a continuation-in-part of prior U.S. patent application Ser. No. 13 / 490,638, filed Jun. 7, 2012, entitled “Formaldehyde Free Binder Compositions With Urea-Aldehyde Reaction Products, (the “parent application”) which is incorporated herein by reference for all purposes.BACKGROUND OF THE INVENTION[0002]Organic binders for composite fiber products such as fiberglass insulation are moving away from traditional formaldehyde-based compositions. Formaldehyde is considered a probable human carcinogen, as well as an irritant and allergen, and its use is increasingly restricted in building products, textiles, upholstery, and other materials. In response, binder compositions have been developed that reduce or eliminate formaldehyde from the binder composition.[0003]One type of these formaldehyde-free binder compositions rely on esterification reactions between carboxylic acid groups in polycarboxy polymers and hydroxyl groups in...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): D06M15/05
CPCD06M15/05C08L1/02C08L3/02D04H1/64D04H1/587Y10T442/30Y10T442/60
Inventor ALAVI, KIARASH
Owner JOHNS MANVILLE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products