Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

World wide patient location and data telemetry system for implantable medical devices

a technology of implantable medical devices and data telemetry, which is applied in the field of communication systems for communicating with implanted medical devices or device systems, can solve the problems of limiting the frequency of monitoring, limiting the life style options of patients, and extremely limited telemetry operating range, so as to enhance the fine granularity of available time slicing of patient device communication signals, and improve the normal, non-emergency communication features.

Inactive Publication Date: 2011-11-15
TAYONG MEDICAL LLC +1
View PDF62 Cites 29 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

It is a still further object of the invention to allow the medical device and patient to be accurately and automatically located enabling prompt medical assistance if necessary.
These improvements include enhancements to the ability to locate the user of the inventive device by dynamic relative location (also called dynamic relative navigation), time slicing of patient device signals to the provider network to improve the normal, non-emergency communications features, clock updating in the patient devices using high accuracy clock signals available from the satellite systems used in GPS which can enhance the fine granularity of available time slicing of patient device communications signals, the use of Enhanced 911 (called E-911, which will permit triangulation on the cell phone callers location through the E-9 11 system) or other emergency telephone systems (including current 911 systems), dead reckoning , improved GPS systems like DGPS, reporting changed location if a larger than some predetermined distance is traversed by the patient device, cell phone triangulation and emergency location, all to supplement contact location information, and the transmission of raw data to be position calculated at remote or emergency vehicle locations.

Problems solved by technology

For this reason, and in order to avoid high current consumption that would shorten the implanted device battery life, telemetry operating range was extremely limited.
This limits the frequency of monitoring and may require certain patients to remain close to the physician's office, and / or limit their life style options (i.e., remain in or near their home).
Emergency conditions (device failure, physiologic variable changes resulting in inappropriate therapy, transient conditions / problems) may require additional monitoring or follow-up.
The short range of conventional device telemetry is itself viewed as unduly limiting of a patient's mobility.
If the patient is out of range of the programmer and an attached telephone system, the security of the patient is diminished.
In any case, such telemetry systems cannot communicate patient device information (uplink telemetry) or accept re-programming (downlink telemetry) when the patient is in remote or unknown locations vis-a-vis the physician of medical support network.
In certain patient conditions, the inability to communicate with the medical implant can significantly increase patient mortality or cause serious irreversible physical damage.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • World wide patient location and data telemetry system for implantable medical devices
  • World wide patient location and data telemetry system for implantable medical devices
  • World wide patient location and data telemetry system for implantable medical devices

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

The Global Communications and Monitoring System (GCMS) of the present invention provides a means for exchanging information with and exercising control over one or more medical devices implanted within the body of a patient employing the patient communications control device. The GCMS in its most comprehensive form of FIGS. 1 and 2 is intended to function no matter how geographically remote the patient may be relative to the monitoring site or medical support network. In this form, the GCMS provides an alarm to notify the medical support network should device or patient problems arise, determines patient location via the Geopositioning Satellite System (GSS), and allows verbal communication between the patient and monitoring personnel via a cellular telephone system link (if available at the patient location) or a satellite based telecommunications link if the patient is outside the range of a cellular link or subscribes only to the satellite-based link.

Improvements in technology ar...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A system for communicating with a medical device implanted in an ambulatory patient and for locating the patient in order to selectively monitor device function, alter device operating parameters and modes and provide emergency assistance to and communications with a patient. The implanted device includes a telemetry transceiver for communicating data and operating instructions between the implanted device and an external patient communications control device that is either worn by or located in proximity to the patient within the implanted device tranceiving range. The control device preferably includes a communication link with a remote medical support network, a global positioning satellite receiver for receiving positioning data identifying the global position of the control device, and a patient activated link for permitting patient initiated personal communication with the medical support network. A system controller in the control device controls data and voice communications for selectively transmitting patient initiated personal communications and global positioning data to the medical support network, for initiating telemetry out of data and operating commands from the implanted device and transmission of the same to the medical support network, and for receiving and initiating re-programming of the implanted device operating modes and parameters in response to instructions received from the medical support network. The communications link between the medical support network and the patient communications control device may comprise a world wide satellite network, hard-wired telephone network, a cellular telephone network or other personal communications system. Methods and apparatae are also described that enhance the ability of the medical system to find patients and to get reports on patient and medical device status, and even update medical device programming using such facilities, and others described in detail within.

Description

FIELD OF THE INVENTIONThe present invention relates to communication systems for communicating with an implanted medical device or device system, and more particularly, such a communication system that may function on a world wide basis at any time to communicate patient location, device monitoring data, device re-programming data and to allow for effective response to emergency conditions.The following references were cited in commonly assigned, U.S. Pat. No. 5,683,432 for ADAPTIVE, PERFORMANCE-OPTIMIZING COMMUNICATION SYSTEM FOR COMMUNICATING WITH AN IMPLANTABLE DEVICE by S. Goedeke et al. to indicate the prior state of the art in such matters. In particular, in reed switch use U.S. Pat. No. 3,311,111 to Bowers, U.S. Pat. No, 3,518,997 to Sessions, U.S. Pat. No. 3,623,486 to Berkovits, U.S. Pat. No, 3,631,860 to Lopin, U.S. Pat. No. , 3,738,369 to Adams et al., U.S. Pat. No. 3,805,796 to Terry, Jr., U.S. Pat. No. 4,066,086 to Alferness et al.; informational type U.S. Pat. No. 4,37...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): A61N1/36A61B5/00A61N1/372G16H40/67
CPCA61B5/0031A61B5/1112G06F19/3418A61B2560/0295A61N1/37282A61B5/686A61B2505/07G16H40/67
Inventor THOMPSON, DAVID L.
Owner TAYONG MEDICAL LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products