Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Supported non-metallocene catalyst, preparation method and application

A non-metallocene, supported technology, applied in the field of non-metallocene catalysts, can solve the problems of complex preparation process, easy breakage, low catalyst polymerization activity, etc., and achieve the effect of simple preparation method

Active Publication Date: 2013-03-13
CHINA PETROLEUM & CHEM CORP +1
View PDF41 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

These two methods use a magnesium compound support, and the particle morphology of the catalyst is difficult to control, which limits the particle morphology of the polymer obtained from the polymerization.
[0010] Chinese patents CN200910180603.3, CN200910180604.8, CN200910210989.8, CN200910210986.4, CN200910210985.X, CN200910210990.0 disclose the preparation method of supported non-metallocene catalysts similar to the above-mentioned patents. Particle morphology in the presence of catalyst is difficult to control, limiting the polymer particle morphology obtained from this polymerization
[0011] Catalysts supported on anhydrous magnesium chloride show high catalytic activity in olefin polymerization, but such catalysts are very brittle and break easily in the polymerization reactor, resulting in poor polymer morphology
Silica-supported catalysts have good fluidity and can be used in gas-phase fluidized bed polymerization, but silica-supported metallocene and non-metallocene catalysts show low catalytic activity
[0018] Patents CN200910180100.6 and CN200910180607.1 disclose that in the absence of alcohol, the non-metallocene complex is dissolved in the magnesium compound solution, and then the porous carrier is added, dried directly or filtered, washed and dried, and then treated with IVB chemical treatment agents, thereby The preparation method and polymerization application of the supported non-metallocene catalyst are obtained. The non-metallocene complex exists uniformly in the carrier, but in the examples, the activity of catalyzing ethylene polymerization is low, and the similar one is the patent CN200910180601.4 And CN200910180606.7 disclosed supported non-metallocene catalyst preparation method and polymerization application, its main difference is that it is not treated with IVB group chemical treatment agent, thus resulting in lower catalyst polymerization activity
[0019] Patent CN200710162666.7 discloses a supported catalyst, a supported non-metallocene catalyst and its preparation method. In the presence of alcohol, a magnesium compound is dissolved in a tetrahydrofuran solvent, a porous carrier is added, and after direct drying, it is mixed with titanium tetrachloride reaction, and finally load the non-metallocene complex, the catalyst activity is high, and the polymer obtained by this polymerization has a high bulk density, but the preparation process is more complicated, and the reaction between the chemical treatment agent and the carrier will destroy the formed carrier structure. Polymer fines are then produced during the polymerization process
[0020] Nevertheless, the ubiquitous problems of the supported non-metallocene catalysts in the prior art are that the loading process is complicated, and generally requires multi-step treatment of the support before loading the non-metallocene complexes, and the olefin polymerization activity is low and difficult to adjust. , and in order to improve its polymerization activity, a higher amount of co-catalyst must be assisted in the polymerization of olefins

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Supported non-metallocene catalyst, preparation method and application
  • Supported non-metallocene catalyst, preparation method and application
  • Supported non-metallocene catalyst, preparation method and application

Examples

Experimental program
Comparison scheme
Effect test

preparation example Construction

[0103] The present invention relates to a method for preparing a supported non-metallocene catalyst, comprising the following steps: dissolving a magnesium compound in a first solvent to obtain a magnesium compound solution; adding a precipitation agent to the magnesium compound solution to obtain a modified carrier The step of contacting the modified carrier with the non-metallocene complex in the presence of a second solvent to obtain a mixed slurry; the step of directly drying the mixed slurry to obtain a modified carrier; and the step of making a metal selected from the group IVB The step of reacting the chemical treatment agent of the compound with the modified support to obtain the supported non-metallocene catalyst.

[0104] The magnesium compound will be specifically described below.

[0105] According to the present invention, the term "magnesium compound" uses a common concept in the art, and refers to an organic or inorganic solid anhydrous magnesium-containing compound ...

Embodiment 1

[0328] The magnesium compound uses anhydrous magnesium chloride, the first solvent uses tetrahydrofuran, the precipitation agent uses hexane, and the non-metallocene complex uses the structure The second solvent is dichloromethane, the chemical treatment agent of the IVB group metal compound is titanium tetrachloride, and the chemical treatment agent is hexane.

[0329] Weigh 5g of anhydrous magnesium chloride, add the first solvent and completely dissolve at room temperature to obtain the magnesium compound solution, then add the precipitating agent, stir and react at 60°C for 4 hours to completely precipitate, filter and wash the precipitant twice, each time The amount of precipitant is 60ml, and it is evenly heated to 60°C and vacuum-dried to obtain a modified carrier.

[0330] Then, the modified carrier is added to the solution formed by the non-metallocene complex and the second solvent, stirred at room temperature for 6 hours, and vacuum dried at room temperature to obtain th...

Embodiment 1-1

[0335] It is basically the same as embodiment 1, but has the following changes:

[0336] The first solvent is changed to toluene, the precipitation agent is changed to cyclohexane, and the non-metallocene complex is used The second solvent was changed to toluene, and the chemical treatment agent for group IVB metal compounds was changed to zirconium tetrachloride (ZrCl 4 ), the solvent for the chemical treatment agent is changed to cyclohexane.

[0337] The ratio of the magnesium compound to the first solvent is 1mol: 150ml; the molar ratio of the magnesium compound to the non-metallocene complex is 1:0.15; the volume ratio of the precipitation agent to the first solvent is 1:2; The molar ratio of chemical treatment agent based on IVB metal elements is 1:0.20.

[0338] The supported non-metallocene catalyst is referred to as CAT-1-1.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a supported non-metallocene catalyst and a preparation method. The supported non-metallocene catalyst is prepared by the steps of precipitating a mixed slurry of a magnesium compound and a solvent, loading a non-metallocene complex, treating with an IVB group chemical treating agent and directly drying. The preparation method is simple and feasible, and the load capacity of the non-metallocene ligand is adjustable. The invention also relates to the application of the supported non-metallocene catalyst in olefin homopolymerisation / copolymerization. Compared with the prior art, the supported non-metallocene catalyst has the characteristics of less usage of a cocatalyst for catalyzing polymerization of alkene, high polymerization activity, substantial copolymerization effect, high bulk density of polymer, and high and adjustable viscosity average molecular weight of the prepared ultrahigh molecular weight polyethylene.

Description

[0001] This application is based on the research project of "(National Eleventh Five-Year Support Plan Project). This project has received great attention and strong support from the Ministry of Science and Technology. Its goal is to form a new generation of polyolefin catalyst technology with independent intellectual property rights and improve domestic The homogeneity of related products has improved the grade of polyolefins in my country and promoted its development in the direction of diversification, serialization, specialization and high performance. Technical field [0002] The invention relates to a non-metallocene catalyst. Specifically, the present invention relates to a supported non-metallocene catalyst, its preparation method and its application in olefin homopolymerization / copolymerization. Background technique [0003] Non-metallocene catalysts appeared in the mid-to-late 1990s, also known as post-catalysts. The central atom of the main catalyst includes almost all t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C08F10/00C08F4/658C08F4/645C08F4/02
Inventor 李传峰任鸿平柏基业阚林郭峰左胜武梅利陈韶辉
Owner CHINA PETROLEUM & CHEM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products