Method for preparing methane and ethylene through carbon dioxide electrochemical reduction
A carbon dioxide and electrochemical technology, applied in the direction of electrodes, electrolytic processes, electrolytic components, etc., can solve the problem of scarcity of catalytic materials, achieve the effects of inhibiting hydrogen evolution reaction, increasing contact area, improving Faraday efficiency and current efficiency
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0042] Embodiment 1: catalyst preparation
[0043] Weigh 10g of urea and 1g of anhydrous copper acetate, mix urea and anhydrous copper acetate evenly and physically to obtain a catalyst precursor, place the catalyst precursor in a 30mL crucible with a lid, and place it in a muffle furnace for pyrolysis Reaction, the reaction temperature is 400°C, the heating rate is 5°C / min, and the reaction time is 2h. The obtained solid is ground to obtain graphite-phase carbon nitride-supported nano-copper oxide, which is the carbon dioxide electrochemical reduction catalyst, called Cu x O@C 3 N 4 -400°C catalyst.
Embodiment 2
[0044] Embodiment 2: catalyst preparation
[0045] The specific preparation process is as shown in Example 1. Only by changing the reaction temperature to 450°C, the graphite-phase carbon nitride-supported nano-copper oxide can also be obtained, which is called Cu x O@C 3 N 4 -450°C catalyst. For Cu in Example 2 x O@C 3 N 4 XRD characterization of the catalyst at -450°C, such as figure 1 As shown, it can be seen that the catalyst includes graphite phase carbon nitride and nano-copper oxides in two crystal forms of cupolite and cuprite.
Embodiment 3
[0046] Embodiment 3: catalyst preparation
[0047] The specific preparation process is as shown in Example 1. Only by changing the reaction temperature to 500 ° C, can also obtain graphite-phase carbon nitride-supported nano-copper oxide, called Cu x O@C 3 N 4 -500°C catalyst. For Cu in Example 3 x O@C 3 N 4 XRD characterization of the catalyst at -500°C, such as figure 1 As shown, it can be seen that the catalyst includes graphite phase carbon nitride and nano-copper oxides in two crystal forms of cupolite and cuprite.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com