Process For Production Of Acrylic Acid Or Its Derivatives

a technology of acrylic acid and production process, which is applied in the direction of catalyst activation/preparation, physical/chemical process catalysts, carboxylic compound preparation, etc., can solve the problems of premature and rapid deactivation of catalysts, increased side products, and non-renewable materials of petroleum

Inactive Publication Date: 2013-10-17
THE PROCTER & GAMBLE COMPANY
View PDF0 Cites 19 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0025]e) Cooling said acrylic acid, acrylic acid derivatives, or mixtures thereof at a GHSV of more than about 360 h−1.

Problems solved by technology

Furthermore, petroleum is a non-renewable material, as it takes hundreds of thousands of years to form naturally and only a short time to consume.
Omission of the base treatment caused increased amounts of the side products.
The side products can deposit onto the catalyst resulting in fouling, and premature and rapid deactivation of the catalyst.
Further, once deposited, these side products can catalyze other undesired reactions, such as polymerization reactions.
Aside from depositing on the catalysts, these side products, even when present in only small amounts, impose additional costs in processing acrylic acid (when present in the reaction product effluent) in the manufacture of superabsorbent polymers (SAP), for example.
These deficiencies of the prior art processes and catalysts render them commercially non-viable.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0159]Solid dibasic potassium phosphate, K2HPO4 (36.40 g, 209 mmol, ≧98%; Sigma-Aldrich Co., St. Louis, Mo.; catalog # P3786) was mixed quickly with an aqueous solution of barium nitrate, Ba(NO3)2 (2050 mL of a 0.08 g / mL stock solution, 627 mmol, 99.999%; Sigma-Aldrich

[0160]Co., St. Louis, Mo.; catalog # 202754) at room temperature. Phosphoric acid, H3PO4 (58.7 mL of an 85 wt %, density=1.684 g / mL, 857 mmol; Acros Organics, Geel, Belgium; catalog #295700010), was added to the slurry, providing a solution containing potassium (K+, MI) and barium (Ba2+, MII) cations. The final pH of the suspension was about 1.6. The acid-containing suspension was then dried slowly in a glass beaker at 80° C. using a heating plate while magnetically stirring the suspension until the liquid was evaporated and the material was almost completely dried. Heating was continued in a oven with air circulation (G1530A, HP6890 GC; Agilent Corp., Santa Clara, Calif.) at 50° C. for 5.3 h, then at 80° C. for 10 h (...

example 2

[0161]113.6 g of an 88 wt % L-lactic acid solution (Purac Corp., Lincolnshire, Ill.) was diluted with 386.4 g of distilled water to provide a solution with an expected lactic acid concentration of 20 wt %. This solution was heated to 95° C.-100° C. and for 12-30 hours. Then, the solution was cooled to room temperature, and its lactic acid and lactic acid oligomers concentrations were measured by HPLC (Agilent 1100 system; Santa Clara, Calif.) equipped with a DAD detector and a Waters Atlantis T3 column (Catalog # 186003748; Milford, Mass.) using methods generally known by those having ordinary skill in the art. The solution was essentially free of oligomers.

example 3

[0162]454 g of an 88 wt % L-lactic acid solution (Purac Corp., Lincolnshire, Ill.) was diluted with 1,300 g of water. The diluted solution was heated to 95° C. and held at that temperature with stirring for about 4 to 12 hours. Then, the solution was cooled to room temperature, and its lactic acid and lactic acid oligomers concentrations were measured by HPLC (Agilent 1100 system; Santa Clara, Calif.) equipped with a DAD detector and a Waters Atlantis T3 column (Catalog # 186003748; Milford, Mass.) using methods generally known by those having ordinary skill in the art. The solution was essentially free of oligomers. Finally, the solution was further diluted with water to yield a 20 wt % L-lactic acid aqueous solution and essentially free of oligomers.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
pressureaaaaaaaaaa
pressureaaaaaaaaaa
pressureaaaaaaaaaa
Login to view more

Abstract

Processes for the catalytic dehydration of hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof with high yield and selectivity and without significant conversion to undesired side products, such as, acetaldehyde, propanoic acid, and acetic acid, are provided. The processes can be carried out either in a gas phase or in a liquid phase.

Description

FIELD OF THE INVENTION[0001]The present invention generally relates to processes that catalytically convert hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof. More specifically, the invention relates to processes useful for the dehydration of hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof with high yield and selectivity to acrylic acid, acrylic acid derivatives, or mixtures thereof, short residence time, and without significant conversion of the hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to undesired side products, such as, for example, acetaldehyde, propanoic acid, acetic acid, 2,3-pentanedione, carbon dioxide, and carbon monoxide. The process can be carried out either in a gas phase or in a liquid phase.BACKGROUND OF THE INVENTION[0002]Acrylic acid, acrylic acid de...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C07C51/377
CPCC07C51/377B01J27/1806B01J35/023B01J37/0036B01J37/08C07C57/04
Inventor GODLEWSKI, JANE ELLENVILLALOBOS, JANETTECOLLIAS, DIMITRIS IOANNISVELASQUEZ, JUAN ESTABAN
Owner THE PROCTER & GAMBLE COMPANY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products