Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method and Apparatus for Separating One or More Components from a Composition

a technology of composition and one or more components, applied in the direction of separation process, liquid degasification, membranes, etc., can solve the problems of time-consuming and expensive separation process, and achieve the effects of less toxic, less corrosive, and less flammability

Inactive Publication Date: 2016-01-28
DOW CORNING CORP
View PDF5 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]Various embodiments of the present invention have advantages over other methods of separating one or more components from a feed composition or systems and apparatus for carrying out separation methods, at least some of which are unexpected. In some embodiments, the method, system, or apparatus can have advantages related to at least one of the absorbent fluid used and the manner in which the absorbent fluid is used. For example, in some embodiments, the absorbent fluid can be at least one of less toxic, less corrosive, less flammable, and less volatile than absorbents of other methods, systems, or apparatuses. In some embodiments, the absorbent fluid can absorb more of the one or more components to be separated per unit of mass than absorbents of other methods, systems, or apparatuses. In some embodiments, the absorbent fluid can absorb a larger mass per time of the one or more components to be separated than absorbents of other methods, systems, or apparatuses. In some embodiments, the absorbent fluid can have greater selectivity for absorption of the one or more components to be separated than absorbents of other methods, systems, or apparatuses. In some embodiments, the absorbent fluid can be regenerated with greater ease and efficiency than the absorbent fluid of other methods, systems, or apparatuses.
[0012]In some embodiments, the method, system, or apparatus can separate one or more components from a mixture more efficiently (e.g., in less time, using a smaller volume of absorbent material, or using less energy) or with less expense than other methods, systems, or apparatuses, including in some embodiments at least one of water, carbon dioxide, nitrogen. In some embodiments including the use of the absorbent fluid as a sweep fluid adjacent to a membrane, the absorbent fluid can provide enhanced flux of the first component across the membrane compared to other methods of using a membrane. In some embodiments, the method, system, or apparatus can separate one or more components from a feed mixture with greater speed than other methods. In some embodiments, the method, system, or apparatus can regenerate or reuse the absorbent fluid with greater ease or efficiency than other methods, systems, or apparatuses. In some embodiments, the method, system, or apparatus can separate specific components of certain mixture with greater speed, greater efficiency, and less cost, as compared to other methods, apparatuses, and systems. In embodiments including a membrane, various embodiments of the present invention can provide more efficient separation using the membrane than other methods of separation using the membrane, and systems and apparatuses for performing the same, such as including different sweep fluids or no sweep fluid.
[0013]In some embodiments, the method, system, or apparatus can be used with lower temperatures or pressures, or with smaller temperature or pressure swings, than other methods, systems, or apparatus for separation of one or more components from a composition using an absorptive process. In some embodiments, the method, system, or apparatus can use a less-corrosive absorptive fluid than other methods, systems, or apparatus, which can extend system lifetime, durability, and reliability. Various embodiments of the method, system, or apparatus can have decreased costs relating to the contactor and additionally ancillary equipment costs and ancillary operating costs.
[0014]In various embodiments, the method, system, or apparatus can separate water (e.g., as a liquid or a gas) from a gaseous or liquid feed composition more efficiently than other methods, systems, or apparatuses. In some embodiments, the absorbent fluid can be more selective for water than other absorbents. In some embodiments, the absorbent fluid can absorb more water faster or with less mass of absorbent than in other methods. In some embodiments, the absorbent fluid can require less energy to desorb solutes such as water vapor than other absorbent fluids.

Problems solved by technology

Separation processes can be expensive and time consuming.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Water Vapor Absorption and Desorption

[0108]A gas / vapor mixture of nitrogen and water vapor at 23° C. and 60% RH was bubbled at a flow rate of 120 sccm at 1.01 atm pressure in a hydroxyl-terminated polydimethylsiloxane oligomer diol having a zero shear kinematic viscosity of about 40 cSt at 25° C. (Absorbent Fluid 1), at 20° C. By gravimetric analysis, 0.55 g of water vapor absorbed in the fluid after 23 h. Nitrogen at 23° C. and 0% RH was then bubbled in the fluid / water vapor mixture to desorb water vapor from the fluid / water vapor mixture. The initial desorption rate constant of water vapor from the fluid was 1.82×10−2 g water vapor desorbed / hr / g water vapor in solution. The interfacial area for mass transfer of water vapor to and from Absorbent Fluid 1 was comparable to the interfacial area for mass transfer of water vapor to and from TEG in Comparative Example 1.

example 2

Water Vapor Absorption and Desorption

[0109]A gas / vapor mixture of nitrogen and water vapor at 23° C. and 60% RH was bubbled at a flow rate of 120 sccm at 1.01 atm pressure in a hydroxyl-terminated oligomeric trifluoropropyl methylsiloxane having a zero shear kinematic viscosity of about 100 cSt at 25° C., (Absorbent Fluid 2) at 20° C. By gravimetric analysis, 2.08 g of water vapor absorbed in the fluid after 79 h. Nitrogen at 23° C. and 0% RH was then bubbled in the fluid / water vapor mixture to desorb water vapor from the fluid / water vapor mixture. The initial desorption rate constant of water vapor from fluid was 3.85×10−2 g water vapor desorbed / hr / g water vapor in solution. The interfacial area for mass transfer of water vapor to and from Absorbent Fluid 2 was comparable to the interfacial area for mass transfer of water vapor to and from Absorbent Fluid 1 in Example 1 and TEG in Comparative Example 1.

example 3

Water Vapor Absorption

[0110]A gas / vapor mixture of nitrogen and water vapor at 23° C. and 20%, 40%, 60%, and 80% RH was bubbled at a flow rate of 120 sccm at 1.01 atm pressure in Absorbent Fluid 1 at 20° C. until steady states were reached. By gravimetric analysis at steady state conditions, 4.2×10−8 mol H2O / Pa·g of Absorbent Fluid 1 absorbed in Absorbent Fluid 1 when the ratio moles H2O absorbed / (moles H2O absorbed+moles Absorbent Fluid 1) was between 0 and 0.05. A gas / vapor mixture of nitrogen and water vapor at 23° C. and 20%, 40%, 60%, and 80% RH was bubbled at a flow rate of 120 sccm at 1.01 atm pressure in Absorbent Fluid 1 at 30° C. until steady states were reached. By gravimetric analysis at steady state conditions, 3.0×10−9 mol H2O / Pa·g of Absorbent Fluid 1 absorbed in Absorbent Fluid 1 when the ratio moles H2O absorbed / (moles H2O absorbed+moles Absorbent Fluid 1) was between 0 and 0.05. The percent decrease in the mol H2O / Pa·g of Absorbent Fluid 1 absorbed in Absorbent Flu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
near wavelengthsaaaaaaaaaa
temperatureaaaaaaaaaa
surface areaaaaaaaaaaa
Login to View More

Abstract

The present invention relates to methods of separating one or more components from a feed composition, methods of desorbing one or more components from an absorbent fluid, as well as systems and apparatus that can carry out the methods. In one embodiment, the present invention provides a method of separating one or more components from a feed composition including contacting at least some of a first component of a feed composition including the first component with an absorbent fluid, to provide a contacted composition and a used absorbent fluid including at least some of the first component contacted with the absorbent fluid. In some embodiments the absorbent fluid can be an organosilicon fluid including an organosilicon including at least one of a hydroxy group, an ether group, an acrylate group, a methacrylate group, an acrylamide group, a methacrylamide group, and a polyether group. In some embodiments, during the contacting the feed composition can be contacted to a first side of a membrane while the absorbent fluid is contacted to a second side of the membrane. In some embodiments, the membrane can be a silicone membrane.

Description

CLAIM OF PRIORITY[0001]This application claims the benefit of priority of U.S. Patent Application Ser. No. 61 / 705,663, entitled “METHOD OF SEPARATING A GAS USING AT LEAST ONE MEMBRANE IN CONTACT WITH AN ORGANOSILICON FLUID,” filed on Sep. 26, 2012, and of U.S. Patent Application Ser. No. 61 / 778,952, entitled “METHOD AND APPARATUS FOR SEPARATING ONE OR MORE COMPONENTS FROM A COMPOSITION,” filed on Mar. 13, 2013, each of which applications is incorporated by reference herein in its entirety.[0002]Separation processes can take advantage of differences between various components of a mixture to at least partially separate (e.g., via absorption) one or more components from the mixture, and are used in a wide variety of settings. For example, separation processes can be used to purify water, to cleanse blood during dialysis, and to separate gases or vapors. Other examples can include dehumidification of air, recovery of hydrogen gas in ammonia synthesis, recovery of hydrogen in petroleum ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): B01D53/22B01D53/14B01D53/26
CPCB01D53/229B01D53/263B01D2252/205B01D53/1493B01D53/1425B01D53/1475B01D53/228B01D53/268B01D63/02B01D71/70B01D2256/245B01D2257/504B01D2257/80B01D2325/027Y02C20/40B01D19/0073B01D53/1443B01D53/18B01D69/04B01D69/06B01D69/10B01D2252/204B01D2256/10B01D2257/102B01D2257/104
Inventor AHN, DONGCHANGREINER, AARON J.HARABAL, JAMES S.LICHTOR, ALEXANDRA N.THOMPSON, JAMES F.
Owner DOW CORNING CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products