Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31results about How to "Less flammable" patented technology

Heat-transfer fluids having reduced flammability

The invention relates to a method for cooling or heating a fluid or a body by means of a vapour compression circuit containing a heat transfer fluid, said circuit being at least partially contained in an enclosure, and the relative humidity of the air in the enclosure being less than or equal to a threshold value H1 which is less than 50%, the flammability of the heat transfer fluid at relative humidity H1 being less than the flammability of the heat transfer fluid at 50% relative humidity.The invention also relates to a cooling or heating installation suited to the implementation of this method. The invention also relates to a method of protection against the risks of fire or explosion in an enclosure containing at least partially a vapour compression circuit containing a heat transfer fluid, as well as a method for reducing the GWP of a transfer fluid. The invention also relates to heat transfer fluids suited to the implementation of the above methods.
Owner:ARKEMA FRANCE SA

Electrolytes including fluorinated solvents for use in electrochemical cells

InactiveUS20130337338A1Increase safety characteristicLess flammableOrganic electrolyte cellsElectrolytesIonSolvent
Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about −30° C. to about 80° C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF6, fluoroalkyl-substituted LiBF4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and / or one or more ionic liquids.
Owner:A123 SYSTEMS LLC

System and method of reducing pulverizer flammability hazard and boiler nitrous oxide output

InactiveUS7261046B1Prevent explosionLess to environmentSolid fuel pretreatmentFluegas recirculationPulverizerOxide
The present invention is a system and method of reducing nitrogen oxides in coal combustion exhaust gases and preventing fire and explosion in pulverized coal systems. The present invention first cools the flue gas exiting a boiler of the pulverized coal system with an air preheater. The present invention removes any particles such as fly ash from the cooled flue gas with an electro-static precipitor or a bag house and recirculates the flue gas. The temperature of the recirculated flue gas is adjusted to a desired temperature and is injected into the pulverizer with combustion air from the air preheater, creating a safer environment for pulverizing the fuel. This mixture of pulverized fuel, air and flue gas is then burned in the boiler, resulting in a cleaner output containing significantly less nitrous oxide.
Owner:APTECH ENG SERVICES

Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder

The present invention relates to a powder which, in addition to a polymer, comprises a flame retardant based on ammonium polyphosphate, to the use of this powder for the layer-by-layer production of moldings, and also to moldings produced from this powder. The moldings constructed using the inventive powder have marked advantages with regard to their flammability, when comparison is made with conventional products, and this permits use in aircraft, for example.
Owner:EVONIK OPERATIONS GMBH

Seat

A seat comprising a seat pan (12) and a support structure, wherein the seat pan (12) is pivotally coupled to the support structure (8) about a first pivot axis (pi) provided across substantially the front of the seat pan (12), such that the seat pan (12) may be pivoted about the said first pivot axis (pi) in use, and the angle of the seat pan (12) relative to the support structure (18) may thus be adjusted. The seat further comprises a backrest (14), the backrest being coupled (p2) to substantially the rear of the seat pan (p2). Also provided is pneumatic apparatus for use with a seat, comprising one or more inflatable cushions for supporting a user in use. Further provided is an armrest comprising: a first pivot axis about which the armrest may be pivotally coupled to a seat, the first pivot axis being arranged to orient sideways out of the seat and thereby enable upward and downward rotation of the armrest in use; and a second pivot axis oriented parallel to the longitudinal dimension of the armrest, the armrest being rotatable about the second pivot axis in use.
Owner:TECHNN INT MANAGEMENT SERVICES

3D printers and feedstocks for 3D printers

This disclosure relates in general to three dimensional (“3D”) printers having a configuration that prepares a three-dimensional object by using a feedstock comprising a metal or a polymer compound and a carbon coating formed on a surface of the compound. This disclosure also relates to such feedstocks and their preparation methods. This disclosure further relates to 3D composite objects prepared by using such printers and feedstocks. This disclosure also relates to carbon containing photocurable formulations and methods for their preparation. This disclosure further relates to electrically conducting 3D polymer composites prepared by using such carbon containing photocurable formulations.
Owner:YAZAKI CORP

Reflective insulation

A reflective insulation system. The reflective insulation system includes a reflective layer such as aluminum, a layer of fiberglass, and a layer of vapor retarding material. A first side of the layer of fiberglass is bonded to the reflective layer by a deposit of hot melt glue. The second side of the layer of fiberglass is bonded to the layer of vapor retarding material by a second deposit of hot melt glue. The vapor retarding layer may be a plastic material, such as polypropylene or a reflective material, such as aluminum. In an alternate construction, the reflective layer has a transverse dimension that is narrower than the vapor retarding material such that edge portions of the reflective layer are spaced inwardly with respect to edges of said vapor retarder material. A strip of adhesive tape, preferably foil tape, overlies and secures edge portions of the reflective and vapor retarder layers.
Owner:SILVERCOTE

Compounds and compositions for use as foaming or frothing agents in ore and coal flotation

Compounds of formula (I) wherein R1 and R2 are each independently C1-C2 alkyl, and m is 1, 2, 3, 4, or 5 and compositions of formula (II) wherein R1 and R2 are each independently C1-C4 alkyl, and n is an integer >_0 and wherein the average molar value of n for the total of the compounds of formula (II) in said composition is in the range of (1) to (3) and methods for production thereof.
Owner:HUNTSMAN AUSTRALIA

Method and Matrix for Enhancing Growth Media

The invention relates to a growth media comprising a hydrophilic polyurethane polymer matrix containing particulate inclusions. The invention also relates to a method of providing the growth media.
Owner:ROSENTHAL INC

Methods for manufacturing betulinic acid

The present invention provides a method for preparing an ester of betulin at the 3-position, e.g., betulin-3-acetate, including the selective alcoholysis of a betulin-3,28-diester, e.g., betulin-3,28-diacetate; a method for preparing betulin-3-acetate including (1) acetylating betulin to provide betulin-3,28-diacetate and (2) the alcoholysis of betulin-3,28-diacetate to provide betulin-3-acetate; and a method for preparing betulinic acid (1) acetylating betulin to provide betulin-3,28-diacetate, (2) the alcoholysis of betulin-3,28-diacetate to provide betulin-3-acetate, (3) oxidizing betulin-3-acetate to provide betulinic aldehyde-3-acetate, (4) oxidizing betulinic aldehyde-3-acetate to provide betulinic acid-3-acetate, and (5) deprotecting betulinic acid-3-acetate to provide betulinic acid.
Owner:RGT UNIV OF MINNESOTA

Inorganic Ionomers Made From Minerals

Inorganic polymers are produced from silicate (—Si—O—) and / or phosphonate (—P—O—) bonds, commonly found in rocks and glass, to create new polymeric materials for rubbers, fibers, and plastics. These inorganic polymers have various advantages over organic counterparts including abundance on the earth's crust, and properties including nonflammability, low toxicity, recyclability, and excellent thermal and chemical resistance.
Owner:RUTGERS THE STATE UNIV

LOW GLOBAL WARMING POTENTIAL BINARY REFRIGERANT MIXTURE WITH COMPARABLE ENERGY EFFICIENCY TO R-134a AND A LOWER HEAT OF COMBUSTION

The present invention provides a binary refrigerant mixture that can be used in single or dual evaporator refrigeration systems to provide for efficient cooling without the use of a high global warming potential (GWP) hydrofluorocarbon refrigerant such as R-134a and that is less flammable than a hydrocarbon refrigerant such as R-600 (n-butane) or R-600a (isobutane). Further, the binary refrigerant mixture can be classified as an A2 refrigerant in that it has a heat of combustion of less than 19 kilojoules per kilogram. In addition, the binary refrigerant mixture has a comparable energy efficiency when compared to R-134a and can be used in refrigeration systems designed for use with R-600 or R-600a refrigerants without having to change their design (i.e., without having to change the compressor design).
Owner:HAIER US APPLIANCE SOLUTIONS INC

Preparation of 4-(4-fluorophenyl)-N-alkylnipecotinate esters, 4-(4-fluorophenyl)-N-arylnipecotinate esters and 4-(4-fluorophenyl)-N-aralkylnipecotinate esters

InactiveUS7138523B2Cost-effective and safe and scalableAvoid defectsBiocideOrganic chemistryIndustrial scaleTetrahydrofuran
A process for the industrial scale manufacture of 4-(4-fluorophenyl)-N-alkylnipecotinate esters by the addition of 4-fluorophenylmagnesium halide in tetrahydrofuran to 3,4-unsaturated-3-piperidine esters.
Owner:APOTEX PHARMACHEN INC

Enhanced feedstock for use with micro-refineries

An ethanol production system includes a feedstock distributor and a micro-refinery. The feedstock distributor can pre-ferment and pre-distill the feedstock so that the ethanol content can be between 15% and 50%. This processing can improve the ethanol production efficiency because less waste material is transported from the distributor to the micro-refineries and less time is needed by the micro-refineries to produce ethanol.
Owner:E FUEL CORP

Reflective insulation

A reflective insulation system. The reflective insulation system includes a reflective layer such as aluminum, a layer of fiberglass, and a layer of vapor retarding material. A first side of the layer of fiberglass is bonded to the reflective layer by a deposit of hot melt glue. The second side of the layer of fiberglass is bonded to the layer of vapor retarding material by a second deposit of hot melt glue. The vapor retarding layer may be a plastic material, such as polypropylene or a reflective material, such as aluminum.
Owner:GUARDIAN BUILDING PRODS DISTRIBUTION

Method for manufacturing betulinic acid

The present invention provides a method for preparing betulin-3-acetate including alcoholyzing betulin 3,28-dibenzoate; a process for preparing betulin-3-acetate including: (1) acylating betulin to provide betulin 3,28-dibenzoate and (2) alcoholyzing betulin 3,28-dibenzoate to provide betulin-3-acetate; and a process for preparing betulinic acid including: (1) acylating betulin to provide betulin 3,28-dibenzoate; (2) alcoholyzing betulin 3,28-dibenzoate to provide betulin-3-acetate; (3) oxidizing betulin-3-acetate to provide betulinic aldehyde-3-acetate; (4) oxidizing betulinic aldehyde-3-acetate to provide betulinic acid-3-acetate; and (5) deprotecting betulinic acid-3-acetate to provide betulinic acid.
Owner:RGT UNIV OF MINNESOTA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products