Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Video Human Behavior Recognition Method Based on Sparse Subspace Clustering

A technology of recognition method and clustering method, applied in the field of computer vision pattern recognition and video image processing, can solve the problems of unsatisfactory effect, high cost and complex algorithm in human behavior recognition, so as to alleviate the problems of over-fitting and gradient diffusion. , improve performance, improve the effect of accuracy

Inactive Publication Date: 2018-05-18
UNIV OF ELECTRONICS SCI & TECH OF CHINA
View PDF6 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Although this method has strong anti-interference ability to the specific direction of the human body, bone size, and spatial position, and has a certain degree of generalization ability, it can be applied to human behavior recognition in a more ideal environment, but it needs to use 3D technology with high cost. In addition, the algorithm of this method is relatively complex, and the effect of human behavior recognition in more complex scenes is still not ideal

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Video Human Behavior Recognition Method Based on Sparse Subspace Clustering

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0032] The hardware configuration that the present invention adopts is: Dell server, 8 nuclear 2.60Ghz CPU, 128Gb memory; Software configuration is: Windows Server 2003 operating system, OpenCV open source computer vision library, Microsoft Visual Studio2010 development environment, Matlab simulation environment etc.

[0033] The concrete implementation stage of the present invention comprises training stage and identification stage, and its concrete implementation steps are as follows:

[0034] A. Establish a model for video human behavior recognition:

[0035] A1: Establish a three-dimensional spatio-temporal subframe cube: Divide each frame on the human behavior video of the same category in the human behavior database Hollywood2 used for learning into subframes of the same size (16×16 pixels), and then form the corresponding human behavior video The time series length of some consecutive frames (10 frames) is used as its thickness to establish a three-dimensional space-tim...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention belongs to computer vision pattern recognition and video image processing methods, including: establishing a three-dimensional space-time sub-frame cube in the model of establishing video human behavior recognition, establishing human behavior feature space, clustering processing, updating labels, and establishing video human behavior recognition In the recognition of models and human behaviors, extract three-dimensional space-time sub-frame cubes from surveillance videos, extract human behavior features, determine the categories of human sub-behaviors in each video, and classify and merge videos with sub-category labels; and the current international understanding of Hollywood2 human behavior Compared with the highest recognition accuracy of the database, it has increased by 16.5%. Therefore, the invention has the ability to automatically extract more discriminative, adaptive, universal and invariant human behavior characteristics, reduces the over-fitting phenomenon and gradient diffusion problems in the neural network, and effectively improves human behavior in complex environments. The accuracy of recognition can be widely used in on-site video surveillance and video content retrieval.

Description

technical field [0001] The invention belongs to computer vision pattern recognition and video image processing methods, in particular to a neural network based on deep learning that adopts sparse subspace (SSC) clustering and subdivision and splits a large number of layers into several layers Fewer shallower approaches to video action recognition based on deep learning neural networks. Background technique [0002] Human behavior recognition based on video is a hot issue in the field of computer vision in recent years. As a typical video understanding problem, human behavior patterns can be identified and determined by analyzing the characteristics of human motion in video image sequences. More specifically, it extracts feature information that can describe behavior from video image sequences, uses machine learning and other technologies to understand it, and uses classifiers to classify to achieve the purpose of recognizing human behavior. [0003] With the development of ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): G06K9/00G06K9/62
Inventor 郝宗波桑楠陆霖霖吴杰杨眷玉万士宁赵俊朱前芳鄢宇烈
Owner UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products