Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

A kind of preparation method of sulfur-doped oxygen-deficiency tio2 photocatalyst

A photocatalyst, sulfur-doped technology, applied in the field of photocatalytic materials

Active Publication Date: 2018-08-28
SHAANXI UNIV OF SCI & TECH
View PDF6 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, in practice, few people have been found to be engaged in research in this area

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • A kind of preparation method of sulfur-doped oxygen-deficiency tio2 photocatalyst
  • A kind of preparation method of sulfur-doped oxygen-deficiency tio2 photocatalyst

Examples

Experimental program
Comparison scheme
Effect test

preparation example Construction

[0034] A kind of sulfur-doped oxygen-deficient TiO 2 The preparation method of photocatalyst comprises the following steps:

[0035] (1) According to the fixed ratio of molar ratio n(Ti):n(Si)=1:2, Ti(SO 4 ) 2 and Na 2 SiO 3 9H 2 The amount of O, and then according to the molar ratio n(TiO 2 ): n(TiS 2 )=1:(0.03~0.1) ratio to determine Na 2 The amount of S and Ti(SO 4 ) 2 Supplementary dosage, thus determined Ti(SO 4 ) 2 total usage. Then based on the total molar amount of Ti and the molar ratio n(Ti):n(SO 4 )=1:(0.02~0.06) to determine doping (NH 4 ) 2 SO 4 the amount of introduction. Thereafter, the corresponding chemical reagents were weighed, and the Na 2 S, Ti(SO 4 ) 2 and (NH 4 ) 2 SO 4 dissolve into an aqueous solution;

[0036] (2) Na 2 SiO 3 9H 2 O Use deionized water to prepare an aqueous solution with a concentration of 0.60-0.65 mol / L, place it in a digitally controlled temperature-adjusted ultrasonic instrument, and first dissolve Ti(SO ...

Embodiment 1

[0042] (1) According to the fixed ratio of molar ratio n(Ti):n(Si)=1:2, Ti(SO 4 ) 2 and Na 2 SiO 3 9H 2 The amount of O, and then according to the molar ratio n(TiO 2 ): n(TiS 2 )=1:0.06 to determine Na 2 The amount of S and Ti(SO 4 ) 2 Supplementary dosage, thus determined Ti(SO 4 ) 2 total usage. Then based on the total molar amount of Ti and the molar ratio n(Ti):n(SO 4 )=1:0.04 to determine doping (NH 4 ) 2 SO 4 the amount of introduction. Thereafter, the corresponding chemical reagents were weighed, and the Na 2 S, Ti(SO 4 ) 2 and (NH 4 ) 2 SO 4 dissolve into an aqueous solution;

[0043] (2) Na 2 SiO 3 9H 2 O Use deionized water to prepare an aqueous solution with a concentration of 0.65 mol / L, place it in a digitally controlled temperature-adjusting ultrasonic instrument, and under the action of continuous stirring and ultrasonic waves at 50°C, Ti(SO 4 ) 2 Add the solution slowly, and continue adding Na slowly after 10 min 2 S solution. Conti...

Embodiment 2

[0050] (1) According to the fixed ratio of molar ratio n(Ti):n(Si)=1:2, Ti(SO 4 ) 2 and Na 2 SiO 3 9H 2 The amount of O, and then according to the molar ratio n(TiO 2 ): n(TiS 2 )=1:0.03 ratio to determine Na 2 The amount of S and Ti(SO 4 ) 2 Supplementary dosage, thus determined Ti(SO 4 ) 2 total usage. Then based on the total molar amount of Ti and the molar ratio n(Ti):n(SO 4 )=1:0.06 to determine doping (NH 4 ) 2 SO 4 the amount of introduction. Thereafter, the corresponding chemical reagents were weighed, and the Na 2 S, Ti(SO 4 ) 2 and (NH 4 ) 2 SO 4 dissolve into an aqueous solution;

[0051] (2) Na 2 SiO 3 9H 2 O Use deionized water to prepare an aqueous solution with a concentration of 0.60 mol / L, place it in a digitally controlled temperature-adjusted ultrasonic instrument, and firstly dissolve Ti(SO 4 ) 2 Add the solution slowly, and continue to add Na slowly after 5min 2 S solution. Continue ultrasonic stirring for 25 minutes to form a w...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
decomposition temperatureaaaaaaaaaa
particle sizeaaaaaaaaaa
Login to View More

Abstract

The invention discloses a preparation method of sulfur-doped oxygen-deficient TiO2 photocatalyst. Using sodium silicate as the silicon source, titanium sulfate as the titanium source, sulfate as the doping sulfur source, and sodium sulfide as the reducing agent, the silica gel-supported TiO2 / TiS2 copolymer was first prepared by ultrasonic copolymerization, and then the doping of sulfate was changed. The product precursor was symbiotically synthesized in situ by hydrothermal autoclaving at 140-160°C, and finally sintered at 650-800°C under a N2 protective atmosphere to obtain a silica gel-supported sulfur-doped oxygen-deficient TiO2 photocatalyst (S / Oxygen-deficient TiO2) material. The results obtained show that the two purposes of O vacancy defects and effective S doping were successfully achieved, creating good conditions for the photocatalytic red shift of TiO2 photocatalyst and efficient utilization of sunlight. Moreover, the product has high purity and good crystallization state.

Description

technical field [0001] The invention belongs to the technical field of photocatalytic materials, in particular to a sulfur-doped oxygen-deficient TiO 2 Preparation method of photocatalyst. Background technique [0002] TiO 2 It is a semiconductor material with a variety of functional properties, and has always had important application value in the fields of chemical industry, electronics, energy, and environmental protection. Anatase TiO 2 It has non-toxic, high-efficiency photocatalytic performance, can effectively degrade organic pollutants in air and water, and is an ideal clean catalytic material for sewage treatment and air purification; similarly, TiO 2 As a semiconductor material, the photogenerated electron-hole effect can make CO 2 Photocatalytic conversion into renewable energy such as methanol and methane. Therefore, TiO 2 Photocatalytic materials play a very important role in the field of environmental protection and renewable energy. [0003] However, Ti...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): B01J27/04B01J37/10
CPCB01J27/04B01J37/10B01J35/39
Inventor 张超武王夏云张利娜张楠王芬
Owner SHAANXI UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products