Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same

Inactive Publication Date: 2007-11-22
UNIVERSITY OF MISSOURI
View PDF25 Cites 18 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005]The present invention relates to a method of sintering ZrB2/SiC bodies at ambient pressures, as well as to control of the microstructure of the so-produced ZrB2/SiC bodies.
[0006]One object

Problems solved by technology

Although hot pressing is not required per se for the sintering of ZrB2 / SiC composites, sintering without the application of elevated pressures results in weak bodies characterized by densities only about 90 percent of theoretical and having poor thermal and mechanical properties.
Therefore, the densified bodies so produced are limited by the constraints of the hot pressing die to simple shapes and moderate sizes.
Further, hot pressing techniques require expensive hot pressing facilities and provide a slow rate of production.
Moreover, the bodies produced by hot pressing techniques are simple and unfinished, thus typically requiring further diamond machining in order to produce a finished end product.
Such machining adds considerable time and financial cost.
In the hot pressing processes, the attendant high pressures are necessary to provide sufficient driving force for substantial densification to occur, since the mixed ZrB2 and SiC powders alone lack sufficient self-diffusion characteristics when heated to sintering temperatures.
The use of high sintering pressures addresses this problem by providing an externally generated driving force to the system, but also adds complexity and cost to the fabrication of ZrB2 / SiC bodies.
Further, the application of high pressure adds inherent geometrical constraints that limit the bodies so formed to simple geometric shapes.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
  • Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0030]A ZrB2—SiC composite composition may be formed as having 20 weight percent SiC, 3 weight percent carbon derived from phenolic resin (which also acts as a binder), and the remainder ZrB2. The composition may be dispersed in a MEK liquid medium and ball milled for 24 hours with WC media so as to be thoroughly mixed. The mixed slurry may be dried to yield a mixed powder, and the recovered powder may be ground and sieved to a predetermined desired particle size distribution. A portion of the sieved powder may then be formed into a green body via uniaxial pressing followed by cold isostatic pressing. The green body may then be heated to about 600 degrees Celsius in flowing argon and held at that temperature for 4 hours to volatilize and evolve gasses produced through resin decomposition. The green body may then be heated to 1650 degrees Celsius in a partial vacuum and held there for up to 6 hours to volatilize boron oxides and react any other oxide impurities with the reducing agen...

example 2

[0031]A ZrB2—SiC composite precursor composition may be formed as having 15 weight percent SiC, 2 weight percent carbon black, 2 weight percent organic binder, 3 weight percent B4C, and the remainder ZrB2. The starting composition may be dispersed in a MEK liquid medium and ball milled for 24 hours with WC media so as to be thoroughly mixed. The slurry of the mixed powders may be dried to yield a mixed powder with binder, and the recovered powder may be ground and sieved to a predetermined desired granule size distribution. A portion of the sieved granules may then be formed into a green body via cold isostatic pressing. The green body may then be heated to about 400 degrees Celsius in flowing argon and held at that temperature for 4 hours to decompose and volatilize the binder. The green body may then be heated to 1650 degrees Celsius in a partial vacuum and held there for 4 hours to remove volatile boron oxides and to react the remaining oxide impurities with the carbon and B4C; s...

example 3

[0032]A ZrB2—SiC composite composition may be formed as having 10 weight percent SiC, 3 weight percent carbon, 2 weight percent organic binder, and the remainder ZrB2. The initial composition may be dispersed in a MEK liquid medium and ball milled for 24 hours with WC media so as to be thoroughly mixed. The slurry of the mixed powders may be dried to yield a mixed powder with binder, and the recovered powder may be ground and sieved to a predetermined desired granule size distribution. A portion of the sieved granules may then be formed into a green body via cold isostatic pressing. The green body may then be heated to about 350 degrees Celsius in flowing argon and held at that temperature for 4 hours to decompose and volatilize the binder. The green body may then be heated to 1650 degrees Celsius in a partial vacuum and held there for 6 hours to volatilize any boron oxides and to react any other oxide impurities with the reducing agent additive; such impurities are reduced by the a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to View More

Abstract

A method of sintering a ZrB2—SiC composite body at ambient pressures, including blending a first predetermined amount of ZrB2 powder with a second predetermined amount of SiC powder, wherein both powders are characterized by the presence of surface oxide impurities. Next the blended powders are mixed to yield a substantially homogeneous powder mixture and a portion of the substantially homogeneous powder mixture is formed into a green body. The body is fired to a first temperature, wherein substantially all surface oxide impurities are reduced and / or volatilized to substantially eliminate oxides from the green body, and the body is heated to a second temperature and sintered to yield a composite body of at least about 99 percent theoretical density and characterized by SiC whisker-like inclusions distributed substantially evenly in a ZrB2 matrix.

Description

TECHNICAL FIELD OF THE INVENTION[0001]The invention relates generally to the field of zirconium diboride ceramics, and, more particularly, to a pressurelessly sintered primarily zirconium diboride ceramic body and a method for making the same.BACKGROUND OF THE INVENTION[0002]Traditionally, zirconium boride and composites thereof, such as zirconium boride / silicon carbide composites, have been fabricated by a hot pressing process. Mixtures of zirconium boride and silicon carbide powders are placed in a pressure vessel and are subjected to elevated pressures while heated to high temperatures, typically in an inert atmosphere or under vacuum. Alternately, ZrB2 / SiC composites may be formed by reaction hot pressing precursors such as metallic Zr, Si powders and boron carbide (B4C) powder (instead of SiC and ZrB2 powder precursors). In either technique, the lack of self-diffusion and low driving forces for sintering and densification inherent in the materials is compensated for through the...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C04B35/58C04B35/81
CPCC04B35/58078C04B35/63476C04B35/806C04B2235/3804C04B2235/3821C04B2235/963C04B2235/428C04B2235/5276C04B2235/96C04B2235/9607C04B2235/3826C04B35/80
Inventor ZHANG, SHI C.HILMAS, GREGORY E.FAHRENHOLTZ, WILLIAM G.
Owner UNIVERSITY OF MISSOURI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products