Digital phase estimator, digital phase locked loop and optical coherent receiver
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
[0036]FIG. 3 shows an overall structure of the optical coherent receiver with a digital phase locked loop according to the present invention.
[0037]As shown in FIG. 3, similar to the prior art optical coherent receiver as shown in FIG. 2, the optical coherent receiver according to the first embodiment of this invention comprises a local oscillator laser 314 for supplying a local oscillator optical signal, an optical 90 degree frequency mixer 315 for mixing a received optical signal with the local oscillator optical signal, first and second balancing photoelectric detectors 316 and 317 for converting the optical signals outputted from the optical 90 degree frequency mixer 315 into baseband electrical signals, first and second A / D converters (ADC) 301 and 302 for respectively receiving output signals of the balancing photoelectric detectors 316 and 317 and respectively converting these output signals into digital signals, a digital phase locked loop 305 for compensating a phase differe...
second embodiment
[0075]FIG. 10 shows the structure of an optical coherent receiver based on feed-forward phase estimation according to the present invention using a phase estimator as shown in FIG. 4.
[0076]Except that the phase estimator 204 as shown in FIG. 2 is replaced with a phase estimating section 204′, the optical coherent receiver as shown in FIG. 10 is the same as that shown in FIG. 2 in terms of the basic structure. The phase estimating section 204′ comprises the phase estimator 310 as shown in FIG. 4 for generating the phase estimation signal 311 in accordance with the inputted signal I+jQ, first and second absolute value calculators 1004 and 1004 for respectively calculating the absolute values of the inputs I and Q, an adder 1006 for calculating a summation 1007 of the absolute values of the inputs I and Q, a look up table 1001 for generating a phase difference 1003 in accordance with the phase estimation signal 311 and the summation of the absolute values of the inputs I and Q, and an ...
third embodiment
[0084]FIG. 11 shows the structure of an optical coherent receiver based on feed-forward phase estimation according to the present invention using a phase estimator as shown in FIG. 5.
[0085]Except that the phase estimator 204 as shown in FIG. 2 is replaced with a phase estimating section 204″, the optical coherent receiver as shown in FIG. 11 is the same as that shown in FIG. 2 in terms of the basic structure. The phase estimating section 204″ comprises the phase estimator 310 as shown in FIG. 5 for generating a phase difference in accordance with the inputted signal I+jQ, and an averager 1101 for removing the phase difference of noise. First and second input terminals of the phase estimator 310 are respectively connected to first and second output terminals of the analog to digital converter 210, an output terminal of the phase estimator 310 is connected to an input terminal of the averager 1101′ and an output terminal of the averager 1101 is connected to a second input terminal of ...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com