Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Product gas generator for producing a substantially stoichiometric mix of hydrogen and oxygen

Inactive Publication Date: 2011-04-28
GEO FIREWALL
View PDF26 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0021]The present Product Gas Generator For Producing A Substantially Stoichiometric Mix Of Hydrogen And Oxygen (termed “Product Gas Generator” herein) works in conjunction with a Combustion Management System, which models each hydrocarbon combustion application, and the Product Gas Generator supplies a product gas, comprising a dynamic mixture of nascent hydrogen (H) and oxygen (O), to the internal combustion engine to propagate the formation of hydroxide radicals (OH) and thereby to improve the level of completion of the hydrocarbon combustion reaction. Atomic hydrogen (or nascent hydrogen) is the species denoted by H (atomic), contrasted with di-hydrogen, the usual “hydrogen” (H2) commonly involved in chemical reactions. Being monatomic, nascent hydrogen (H) atoms are much more reactive and, thus, a much more effective reducing agent than ordinary diatomic H2 atoms. The Combustion Management System provides product gas volumetric requirement information and takes into account the engine style, primary torque requests, and hydrocarbon fuel consumption information to develop an operating system specific application that produces consistent measurable results. Stoichiometric models are used versus trial and error data obtained from running the engine on a dynomometer through various load and engine speed conditions, which saves time and money while insuring that each Combustion Management System application is adequate for its intended use.
[0028]Unlike the HRM, which introduces a competitive reaction into the internal combustion engine, this approach directly addresses the primary reaction driving the hydrocarbon combustion mechanism toward completion. This approach creates a twofold increase in the reactive tendency toward completion. Hydroxide radicals (OH) are lighter than the standard diatomic oxygen (O2) being administered, which allows for greater diffusivity and an increased potential for oxidative continuance to supersede polymerization. Also, the higher oxidative potential of the hydroxide radicals (OH) allow for carbon chain cleaving reactions, thus creating more reactive sites on the hydrocarbon molecules and greater reaction distribution.
[0029]Fuel savings are achieved as a result of extracting more stored energy from each hydrocarbon molecule. Every carbon-carbon and carbon-hydrogen bond in the cylinders of the internal combustion engine represents stored energy that could be translated into mechanical work. By promoting a higher degree of oxidative completion, the Combustion Management System extracts more energy from the hydrocarbon fuel. Similarly, emissions of particulate matter, hydrocarbons, and carbon monoxide from the internal combustion engine are a direct result of this hydrocarbon combustion not propagating to completion. Therefore, furthering the combustive process has a direct and measurable impact on both fuel consumption and emissions reduction.
[0030]As noted above, polymerization is a problem in combustive reactions; and the primary causes of polymerization within an engine cylinder are fuel droplet size, turbulence, air composition, molecule size, and reaction mechanism. The Combustion Management System addresses each of these dynamics to ensure successful and consistent reductions. The product gas injection port not only administers the activated gas but also is designed to increase turbulence and ensure homogeneous mixing. Fuel injectors are modified or replaced to optimize droplet size and injection timing. The activated reaction mechanism generates more molecules of smaller size and greater separation. All of these factors combine to facilitate a near total reduction of particulate matter emissions.
[0031]The Combustion Management System is geared toward increasing the reactivity of the hydrocarbon fuel itself. By increasing the number of active carbon sites in the fuel, which is present in the cylinders of the internal combustion engine, the statistical probability of oxygen reacting in the desired fashion is dramatically improved. Also, the addition of nascent hydrogen (H) in stoichiometric balance with oxygen (O) nullifies the competition between the hydrogen (H) and carbon (C) for oxidation. Also, the creation of more active carbon sites reduces residence time of active oxygen and decreases the statistical probability that nitrogen and oxygen will collide during the optimum temperature threshold. Reaction rate reductions also serve to limit the timeframe where NOx formation is energetically feasible.

Problems solved by technology

The hybridized gas mixture is unique to the electrochemical process and cannot be replicated using compressed hydrogen gas (H2) or fossil fuel reformation products.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Product gas generator for producing a substantially stoichiometric mix of hydrogen and oxygen
  • Product gas generator for producing a substantially stoichiometric mix of hydrogen and oxygen
  • Product gas generator for producing a substantially stoichiometric mix of hydrogen and oxygen

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Internal Combustion Engines

[0039]A diesel engine is an internal combustion engine that uses the heat generated by the compression of the atmospheric air in the combustion chamber to initiate ignition which burns the diesel fuel, which is injected into the combustion chamber during the final stage of compression. This is in contrast to a gasoline engine, which uses the Otto Cycle, in which an air-fuel mixture, located in the combustion chamber and compressed by a piston, is ignited by a spark plug. The gasoline engine has a thermal efficiency (the conversion of fuel into work) of 8% or 9%, while the diesel engine has a thermal efficiency of about 30%.

[0040]In the diesel engine, only air is initially introduced into the combustion chamber. The air then is compressed with a compression ratio typically between 15:1 and 22:1, resulting into a 40-bar (4.0 MPa; 580 psi) pressure compared to 8 to 14 bars (0.80 to 1.4 MPa) (about 200 psi) in the gasoline engine. This high compression of the ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Lengthaaaaaaaaaa
Volumeaaaaaaaaaa
Currentaaaaaaaaaa
Login to View More

Abstract

The Product Gas Generator works in conjunction with a Combustion Management System to supply a product gas, comprising a dynamic mixture of nascent hydrogen (H) and oxygen (O), to the internal combustion engine to propagate the formation of hydroxide radicals (OH) and thereby to improve the level of completion of the hydrocarbon combustion reaction. The Combustion Management System provides product gas volumetric requirement information; and takes into account the engine style, primary torque requests, and hydrocarbon fuel consumption information to develop an operating system specific application that produces consistent measurable results.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This patent application claims priority to U.S. Provisional Patent Application Ser. No. 61 / 241,783 filed on Sep. 11, 2009. This application is also related to applications filed on the same date titled “System For Increasing The Level Of Completion Of Diesel Engine Hydrocarbon Combustion”; “System To Dynamically Vary The Volume Of Product Gas Introduced Into A Hydrocarbon Combustion Process”; “System For Regulating A Hydrocarbon Combustion Process Using A Substantially Stoichiometric Mix Of Hydrogen And Oxygen”; “System For Producing A Substantially Stoichiometric Mix Of Hydrogen And Oxygen Using A Plurality Of Electrolytic Cells”; and “Regulating A Hydrocarbon Combustion Process Using A Set Of Data Indicative Of Hydrocarbon Fuel Consumed Corresponding To A Monitored Engine Operating Characteristic.” The foregoing applications are hereby incorporated by reference to the same extent as though fully disclosed herein.FIELD OF THE INVENTION[0...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C25B9/00
CPCC25B1/06C25B15/08Y02T10/121Y02E60/366F02M25/12C25B1/04C25B11/00Y02E60/36Y02T10/12
Inventor DEE, JOHNFULTON, STEVEKUJAWSKI, DANTUZINKEWICH, JASON D.
Owner GEO FIREWALL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products