Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Rare-earth-ion-doped BaBrI microcrystalline glass and preparation method thereof

A technology of glass-ceramics and rare earth ions, which is applied in the field of glass-ceramics doped with rare earth ions, can solve the problems of easy deliquescence of BaBrI crystals, difficulty in growing large-sized crystals, poor mechanical properties, etc., and achieve superior scintillation performance and low production cost , good mechanical properties

Inactive Publication Date: 2014-07-30
NINGBO UNIV
View PDF3 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Scintillation crystals generally have the advantages of radiation resistance, fast decay, and high light output, but scintillation crystals also have the following serious disadvantages: difficult to prepare, expensive
However, BaBrI crystals are prone to deliquescence, poor mechanical properties, easy to cleavage into flakes, difficult to grow large-sized crystals, and expensive, which affect its practical application.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Rare-earth-ion-doped BaBrI microcrystalline glass and preparation method thereof
  • Rare-earth-ion-doped BaBrI microcrystalline glass and preparation method thereof
  • Rare-earth-ion-doped BaBrI microcrystalline glass and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0023] Embodiment 1: Table 1 shows the glass formula and the first crystallization temperature value of Embodiment 1.

[0024] Table 1

[0025]

[0026] The specific preparation process is as follows: in the first step, weigh 50 grams of analytically pure raw materials according to the formula in Table 1, add 2.5 grams of NH 4 HF 2 , 2.5 g NH 4 HBr 2 , 2.5 g NH 4 HI 2 , Mix the raw materials evenly and pour them into a corundum crucible for melting, the melting temperature is 1480°C, keep warm for 1 hour, pour the glass melt into a cast iron mold, then place it in a muffle furnace for annealing, and keep warm at the glass transition temperature Tg for 2 Hours later, cool down to 50°C at a rate of 10°C / hour, turn off the power supply of the muffle furnace to automatically cool down to room temperature, and take out the glass; in the second step, according to the glass thermal analysis (DTA) experimental data, the first crystallization temperature of 762 ℃, heat-treat t...

Embodiment 2

[0028] Embodiment 2: Table 2 shows the glass formula and the first crystallization temperature value of Embodiment 2.

[0029] Table 2

[0030]

[0031] The specific preparation process is as follows: in the first step, weigh 50 grams of analytically pure raw materials according to the formula in Table 2, add 2.5 grams of NH 4 HF 2 , 2.5 g NH 4 HBr 2 , 2.5 g NH 4 HI 2 , Mix the raw materials evenly and pour them into a quartz crucible to melt. The melting temperature is 1420°C and keep warm for 2 hours. Hours later, cool down to 50°C at a rate of 10°C / hour, turn off the power supply of the muffle furnace to automatically cool down to room temperature, and take out the glass; in the second step, according to the experimental data of thermal analysis (DTA) of the glass, the first crystallization temperature of 755 ℃, heat-treat the prepared glass in a precision annealing furnace in nitrogen at 775°C for 6 hours, then cool down to 50°C at a rate of 5°C / hour, turn off the...

Embodiment 3

[0033] Embodiment 3: Table 3 shows the glass formula and the first crystallization temperature value of Embodiment 3.

[0034] table 3

[0035]

[0036] The specific preparation process is as follows: in the first step, weigh 50 grams of analytically pure raw materials according to the formula in Table 3, add 2.5 grams of NH 4 HF 2 , 2.5 g NH 4 HBr 2 , 2.5 g NH 4 HI 2, Mix the raw materials evenly and pour them into a quartz crucible to melt. The melting temperature is 1440°C and keep warm for 1.5 hours. Hours later, the temperature was lowered to 50° C. at a rate of 10° C. / hour, the power of the muffle furnace was turned off and the temperature was automatically lowered to room temperature, and the glass was taken out. In the second step, according to the glass thermal analysis (DTA) experimental data, the first crystallization temperature is 771°C, and the prepared glass is placed in a nitrogen precision annealing furnace at 790°C for 5 hours, and then heated at 5°C...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a rare-earth-ion-doped BaBrI microcrystalline glass and a preparation method thereof. The microcrystalline glass is composed of the following components in percentage by mole: 55-60 mol% of GeO2, 18-22 mol% of NaF, 2-8 mol% of BaO, 13-17 mol% of BaBrI and 1-3 mol% of rare-earth iodide. The rare-earth iodide is EuI2, CeI3 or TbI3. The preparation method comprises the following steps: preparing GeO2-NaF-BaO-BaBrI-LnI2.GeO2-NaF-BaO-BaBrI-LnI3 glass by a fusion process, and carrying out heat treatment to obtain the transparent BaBrI microcrystalline glass. The BaBrI microcrystalline glass has the advantages of deliquescence resistance, favorable mechanical properties, higher short-wavelength blue-violet light transmission rate, superhigh light output, quick attenuation, favorable energy resolution, favorable time resolution and the like. The preparation method of the microcrystalline glass is simple and lower in production cost.

Description

technical field [0001] The invention relates to a rare earth ion-doped glass-ceramic, in particular to a rare-earth ion-doped BaBrI glass-ceramic used as a scintillation material and a preparation method thereof. Background technique [0002] Scintillation material is a light functional material that can emit visible light under the excitation of high-energy rays or other radioactive particles. It is widely used in nuclear medicine diagnosis, high-energy physics and nuclear physics experimental research, industrial and geological exploration and other fields. Depending on the application field, the requirements for scintillators are also different, but in general scintillator materials should have the following characteristics: high luminous efficiency, fast fluorescence decay, high density, low cost and good radiation resistance. Scintillation crystals generally have the advantages of radiation resistance, fast decay, and high light output, but scintillation crystals also h...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): C03C10/16
Inventor 王倩张约品夏海平杨斌张为欢欧阳绍业
Owner NINGBO UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products