Gas filling and locking integrated detonator and fracturing device

An all-in-one, detonator technology, applied in the direction of the valve for inflation, the generation of compressed gas, the blasting cylinder, etc., can solve the problems of eliminating potential safety hazards, high manufacturing cost, low blasting power, etc., to avoid potential safety hazards and save mixing. material, low cost effect

Pending Publication Date: 2017-08-18
郭远军
View PDF1 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0006] The detonator with the above structure has the following problems: 1. The thermal reactants to be filled in the detonator need to be processed by mixing, mixing, coiling or bagging, and the filling process is time-consuming. 2. During the filling process of the detonator, the oxidant and reducing agent are prone to uneven mixing, resulting in low heat release efficiency; 3. The thermal reaction material needs to be mixed and filled in advance, and the temperature during transportation is too high. It is highly likely to cause combustion or explosion, and has a greater potential safety hazard; 4. Due to the delay of the detonating material or other situations, it is easy to appear the situation of squibs, and it is impossible to judge the cause of the squibs, so it cannot be eliminated by rowing the squibs Potential safety hazard; 5. The detonation method of the existing gas blaster uses a solid activator to burn to generate high temperature, which directly conducts heat to the liquid carbon...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Gas filling and locking integrated detonator and fracturing device
  • Gas filling and locking integrated detonator and fracturing device
  • Gas filling and locking integrated detonator and fracturing device

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0074] A kind of inflatable and air-locked integrated detonator, such as figure 1 As shown, it includes a housing 1, a filling chamber 2, an ignition mechanism 3 and an inflatable mechanism 4. The housing 1 is filled with a chamber 2, and the housing 1 is sealed to connect the ignition mechanism 3 and the inflatable mechanism 4. The pressure resistance of the housing 1 The strength is greater than 5.045Mpa; the shell 1 is a carbon steel cylinder or a stainless steel cylinder, and the inflation mechanism 4 and the ignition mechanism 3 are respectively connected to both ends of the shell 1; the filling chamber 2 is filled with a reducing agent and an oxidizing agent, and the oxidizing agent It is liquid oxygen, supercritical oxygen or high-pressure gaseous oxygen, and the reducing agent is carbon-containing organic matter or reducing element;

[0075] Such as figure 2 As shown, the ignition mechanism 3 includes a heating wire 311, a wire 312, a wire through hole 313 and a seal...

Embodiment 2

[0085] The difference with embodiment 1 is: as Figure 5 As shown, the ignition mechanism 3 includes a heating wire 311, a wire 312, a wire through hole 313 and a sealing base 314, the heating wire 311 is connected to the wire 312, and the axial center of the sealing base 314 is a wire through hole 313, and the wire 312 is wrapped through the insulating layer. Wire perforation 313; the upper end of the wire perforation 313 is an internally threaded hole 3131, and an internal sealing rubber ring 3132 is installed at the bottom of the internally threaded hole 3131. The internally threaded hole 3131 is matched with a perforating screw 3133, and the axis of the perforating screw 3133 is provided with a perforation, and the wire 312 passes through the inner sealing rubber ring 3132 and the perforated screw 3133, and the perforating screw 3133 cooperates with the internal thread hole 3131 to press the inner sealing rubber ring 3132 to seal the wire hole 313; the outer wall of the sea...

Embodiment 3

[0087] The difference with embodiment 1 or 2 is: as Image 6 As shown, the housing 1 includes a first segment body 11 and a second segment body 12, the first segment body 11 and the second segment body 12 are connected through a threaded structure, and are matched with a threaded sealing ring 13 for Sealing; the inflation mechanism 4 and the ignition mechanism 3 are respectively connected to both sides of the first segment body 11 and the second segment body 11; this structure is convenient for charging.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Compressive strengthaaaaaaaaaa
Thicknessaaaaaaaaaa
The inside diameter ofaaaaaaaaaa
Login to view more

Abstract

The invention discloses a gas filling and locking integrated detonator and a fracturing device. The gas filling and locking integrated detonator comprises a shell, a filling cavity, an ignition mechanism and a gas filling mechanism. The filling cavity is formed in the shell. The shell is connected with the sealing ignition mechanism and the gas filling mechanism. The filling cavity is filled with supercritical oxygen and carbonaceous organic materials or reducibility elementary substances. The gas filling mechanism comprises a gas filling hole, a gas filling locking valve rod and a gas filling valve seat. The gas filling valve seat penetrates through the gas filling hole in the axial direction. A gas locking cavity is formed in the upper portion of the gas filling hole. A rubber sealing pipe valve is installed at the bottom of the gas locking cavity. A pipe valve through hole is formed in the center of the rubber sealing pipe valve. An internal thread is arranged on the inner wall of an edge opening of the gas locking cavity. The side edge of the gas filling locking valve rod is provided with an external thread matched with the internal thread. A gas filling through hole is formed in the axis position of the gas filling locking valve rod. The gas filling and locking integrated detonator and the fracturing device have the advantages that manufacturing cost is low, reaction material mixing uniformity is high, heat release efficiency is high and transporting safety is good.

Description

technical field [0001] The invention belongs to the technical field of detonators, and in particular relates to an air-filled and air-locked integrated detonator and a cracker. Background technique [0002] Gas blasting technology is to use the vaporization and expansion of easily vaporized liquid or solid substances to generate high-pressure gas, which makes the surrounding medium expand to do work and cause fragmentation. It has the characteristics of no open flame, safety and high efficiency. [0003] Carbon dioxide gas blasters are typical blasting equipment in gas blasting technology, and are widely used in mining, geological exploration, cement, steel, electric power and other industries, subways and tunnels, municipal engineering, underwater engineering, and emergency rescue. [0004] The existing gas blaster mainly includes a vaporization liquid storage pipe and a heating detonator installed in the vaporization liquid storage pipe; the heat generation detonator ignit...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): F42B3/04F42B3/10F42B3/103F42B3/11F42B3/18C06D5/10C06B47/12C06B47/06C06B47/02C06B27/00F16K24/06
CPCC06B27/00C06B47/02C06B47/06C06B47/12C06D5/10F16K24/06F42B3/045F42B3/10F42B3/103F42B3/11F42B3/18Y02P20/10Y02P20/54
Inventor 郭远军
Owner 郭远军
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products