Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Systems and methods for forming metal oxides using metal organo-amines and metal organo-oxides

a technology of metal organoamines and metal oxides, which is applied in the direction of coatings, transistors, chemical vapor deposition coatings, etc., can solve the problems of forming an undesirable siosub>2 /sub>interfacial layer, the traditional use of integrated circuit technology is approaching its performance limits, and the layer no longer effectively functions as an insulator

Inactive Publication Date: 2005-12-29
MICRON TECH INC
View PDF42 Cites 102 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention provides methods for vapor depositing metal oxide layers on a substrate using precursor compounds of the formula M1q(O)x(OR1)y and M2(NR2)w(NR3R4)z. These methods do not require the use of water or a strong oxidizer, reducing the likelihood of producing an undesirable interfacial oxide layer between the desired metal oxide layer and the substrate. The methods can be used in chemical vapor deposition (CVD) or atomic layer deposition (ALD) processes. The invention also provides precursor compositions and a vapor deposition apparatus for use in these methods. The technical effects of the invention include reducing the likelihood of producing an undesirable interfacial oxide layer and improving the quality of the metal oxide layer.

Problems solved by technology

The continuous shrinkage of microelectronic devices such as capacitors and gates over the years has led to a situation where the materials traditionally used in integrated circuit technology are approaching their performance limits.
However, when the SiO2 layer is thinned to 1 nm (i.e. a thickness of only 4 or 5 molecules), as is desired in the newest micro devices, the layer no longer effectively performs as an insulator due to the tunneling current running through it.
But vapor deposition processes typically involve the co-reaction of reactive metal precursor compounds with an oxygen source such as oxygen or water, either of which can cause formation of an undesirable SiO2 interfacial layer.
However, undesirable chlorine residues can also be formed.
Furthermore, zirconium and hafnium alkyls are generally unstable and not commercially available.
They would also likely leave carbon in the resultant films.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Systems and methods for forming metal oxides using metal organo-amines and metal organo-oxides
  • Systems and methods for forming metal oxides using metal organo-amines and metal organo-oxides
  • Systems and methods for forming metal oxides using metal organo-amines and metal organo-oxides

Examples

Experimental program
Comparison scheme
Effect test

example

Example 1

Atomic Layer Deposition of (Hf,Ti)O2

[0071] A chamber of configuration shown in FIG. 4 was set up with pneumatic valves under computer control to pulse the valves open in sequential manner. Two reservoirs connected to the chamber contained Ti(NMe2)4 and Hf(OC(CH3)3)4 (Strem Chemical, Newburyport, Mass.). The substrate was a silicon wafer having doped poly-silicon as a top layer and was maintained at 150° C. for the deposition.

[0072] Each cycle involved a 5-second pulse of Hf(OC(CH3)3)4 and a 5-second pulse of Ti(NMe2)4, each separated by a 10-second purge with argon and a 20-second pump down under dynamic vacuum. The precursors were introduced with helium carrier gas, using mass flow controllers set at 5 sccm. After 400 cycles a (Hf,Ti)O2 film 180 Å thick was obtained. The film was nearly 50 / 50 Hf / Ti based on x-ray photoelectron spectroscopy (XPS) analysis, and had no detectable nitrogen or carbon.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
pressureaaaaaaaaaa
thicknessaaaaaaaaaa
Login to View More

Abstract

A method of forming (and an apparatus for forming) a metal oxide layer on a substrate, particularly a semiconductor substrate or substrate assembly, using a vapor deposit ion process and one or more precursor compounds that include organo-amine ligands and one or more precursor compounds that include organo-oxide ligands.

Description

FIELD OF THE INVENTION [0001] This invention relates to methods of forming a metal oxide layer on a substrate using one or more precursor compounds that include one or more organo-amine precursor compounds (e.g., alkylamine or alkylimino-alkylamine precursor compounds) with one or more organo-oxide precursor compounds (e.g., alkoxide or oxo-alkoxide) precursor compounds during a vapor deposition process. The precursor compounds and methods are particularly suitable for the formation of a metal oxide layers on semiconductor substrates or substrate assemblies. BACKGROUND OF THE INVENTION [0002] The continuous shrinkage of microelectronic devices such as capacitors and gates over the years has led to a situation where the materials traditionally used in integrated circuit technology are approaching their performance limits. Silicon (i.e., doped polysilicon) has generally been the substrate of choice, and silicon dioxide (SiO2) has frequently been used as the dielectric material with si...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C23C16/40C23C16/44C23C16/455H01L21/316H01L21/822H01L21/8242H01L21/8244H01L21/8246H01L27/04H01L27/105H01L27/108H01L27/11H01L29/78
CPCC23C16/405H01L21/31604C23C16/45553C23C16/45531H01L21/02194H01L21/02175H01L21/02205H01L21/02271H01L21/0228H01L21/02189H01L21/02192C23C16/40H01L21/31
Inventor VAARTSTRA, BRIAN A.WESTMORELAND, DONALD L.
Owner MICRON TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products