Corrosion inhibitor

a corrosion inhibitor and corrosion technology, applied in the field of corrosion inhibitors, can solve the problems of low inhibitor cost, sludge formation, foam formation, etc., and achieve the effect of preventing or reducing the formation of precipitates and preventing the occurrence of under-deposit corrosion

Inactive Publication Date: 2006-03-02
TRAHAN SCOTT DAVID +1
View PDF16 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005] It has been found that low levels of molybdate in combination with low levels of various phosphorous containing compounds controls corrosion in ferrous metals caused by contact with UAN solutions. In addition, foaming, sludge formation, and / or focused or localized corrosion has not been observed in connection with the use of the molybdate with certain phosphorous containing compounds. Additionally, the use of molybdate in combination with phosphorous containing compounds prevents or reduces the formation of precipitates, including iron and other potential precipitates. It is believed that the phosphorous containing compounds used in the instant invention act to tie up or sequester iron and others materials in a manner which maintains the potential precipitate in solution. Precipitates can cause localized corrosion, by creating a site which the inhibitor cannot reach, sometimes referred to as under-deposit corrosion. The avoidance of precipitates by the use of phosphorous containing compounds prevents the occurrence of under-deposit corrosion.
[0007] The combination of low levels of molybdate with low levels of one or more of these phosphorous containing compounds has resulted in lower corrosion rates than either inhibitor used alone, even at comparable dosage rates, and has resulted in cleaner UAN solutions with little iron or other material precipitates than with either inhibitor used alone.

Problems solved by technology

In addition, foaming, sludge formation, and / or focused or localized corrosion has not been observed in connection with the use of the molybdate with certain phosphorous containing compounds.
Precipitates can cause localized corrosion, by creating a site which the inhibitor cannot reach, sometimes referred to as under-deposit corrosion.
The dosage of molybdate and phosphorous containing compounds can vary within a wide range, limited on the low side by the amount needed to insure adequate corrosion inhibition (taking into account that UAN solution may be further diluted by the consumer prior to use), and on the high side by the cost of the inhibitor and by the solubility of the inhibitors in the UAN solution.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Corrosion inhibitor
  • Corrosion inhibitor

Examples

Experimental program
Comparison scheme
Effect test

examples

[0015] Tests were run on carbon steel coupons using a variety of phosphate compounds combined with molybdate. Table 1 summarizes the results of the first of these tests. An uninhibited 65 weight % aqueous solution of UAN was utilized (32% elemental Nitrogen). UAN solution was added to a 1 liter volumetric flask, and the volumes of required inhibitor compounds required to equal the proper dosage, as set forth in Table 1, were calculated. Each of the individual specific gravities of each solution was determined at 60 degrees F. using a 10 ml precision picometer. The individual test solutions were prepared by withdrawing aliquots of each corrosion inhibitor using a one CC precision syringe and injecting the resulting volume into the one liter volumetric flask containing the UAN solution. A water bath maintained at 89 degrees F. was utilized. Beakers containing the test solutions and metal test coupons were placed into the water bath. The ppm dosages of each inhibitor is expressed in re...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
weight %aaaaaaaaaa
weight %aaaaaaaaaa
weight %aaaaaaaaaa
Login to view more

Abstract

A corrosion inhibitor for use with Urea Ammonium Nitrate solutions is disclosed, comprising a blend of molybdate and one or more of the inorganic phosphates (including phosphates, polyphosphates, and pyrophosphates) and organic phosphates or phosphonates. Inorganic phosphates include, but are not limited to, SHMP (Sodium Hexametaphosphate) and TKPP (Tetra-Potassium Pyrophosphate). Phosphoric acid may also be utilized to provide phosphate ions, by itself or in combination with other phosphorous containing compounds as a secondary inhibitor. There are numerous other inorganic phosphates that will also serve as suitable secondary inhibitors. Organic phosphates or phosphonates include, but are not limited to, HEDP (1-Hydroxyethylidine-1,1-diphosphonic acid; also known as ethanol diphosphonate, acetodiphosphonic acid, or etidronic acid), ATMP (aminotri(methylenephosphonic acid)), PBTC (Phosphonobutane tricarboxylic acid), DETPMP (Diethylenetriaminepenta(methylene phosphonic acid)), and HPA (hydroxyphosphono acetic acid). There are numerous other organic phosphates and phosphonates that will also serve as suitable secondary inhibitors. The amount of molybdate can range from 1 ppm to 500 ppm by weight of fertilizer solution, with the preferred range from 10 ppm to 200 ppm. Amounts of inorganic or organic phosphate can also range from levels as low as 1 ppm up to 500 ppm, with the preferred range being from 5 ppm to 50 ppm.

Description

FIELD OF THE INVENTION [0001] This invention relates to corrosion inhibitors to be used with Urea Ammonium Nitrate solutions, commonly used as agricultural fertilizer. Such solutions can be very corrosive to metals, particularly ferrous metals. BACKGROUND OF THE INVENTION [0002] Aqueous solutions of Urea Ammonium Nitrate (“UAN”) are commonly used as agricultural fertilizer. However, these solutions, typically 50%-80% UAN by weight (20% to 50% water), are very corrosive to metals, particularly ferrous containing metals. Manufacturers of UAN solutions have tried a number of methods to resolve the corrosion problem. [0003] The production of UAN solutions can be by batch or continuous process. Urea and Ammonium Nitrate solutions are blended with water and pH adjusted, sometimes using ammonia. During production or post-production, efforts are made to defeat or limit the corrosive effects of the UAN solution. Some manufacturers use filmers, that act to coat the metal coming into contact w...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C23F11/00C05C1/00C05G3/00C23F11/18
CPCC05C1/00C05G3/0076C23F11/188Y10S71/04C05C9/00C05G3/0064C05G5/23
Inventor TRAHAN, SCOTT DAVIDMISTRETTA, ERIC PAUL
Owner TRAHAN SCOTT DAVID
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products