Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Human diacylglycerol acyltransferase 2 (DGAT2) family members and uses therefor

Inactive Publication Date: 2006-06-22
GIMENO RUTH +3
View PDF24 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Thus, blocking absorption of a fraction of such fat would lead to weight loss.
Although production of diacylglycerol can be accomplished through various mechanisms, the final rate-limiting step in biosynthesis of triaclyglycerol is accomplished via the enzyme diacyl glycerol acyltransferase (DGAT).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Human diacylglycerol acyltransferase 2 (DGAT2) family members and uses therefor
  • Human diacylglycerol acyltransferase 2 (DGAT2) family members and uses therefor

Examples

Experimental program
Comparison scheme
Effect test

example 1

Identification and Characterization of Human DGAT2 Family Member cDNAs and Proteins

[0345] A number of gene sequences were identified which have homology to the DGAT2 sequences. The human DGAT2, (herein referred to as 86606) sequence is depicted in SEQ ID NO:9, which is approximately 2428 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1166 nucleotides (nucleotides 220-1386 of SEQ ID NO:9). The coding sequence encodes a 388 amino acid protein (SEQ ID NO:10).

[0346] The human DGAT2 family member sequence 60489 (SEQ ID NO:7), which is approximately 1255 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1025 nucleotides (nucleotides 170-1195 of SEQ ID NO:7) The coding sequence encodes a 341 amino acid protein (SEQ ID NO:8).

[0347] The DGAT2 family member sequence 112041 (SEQ ID NO:19), which is approximately 1716 nucleotides long including untranslated r...

example 2

Identification and Characterization of Murine DGAT2 Family Member cDNAs and Proteins

[0353] A number of murine gene sequences were also identified which are related to DGAT2 sequences. The murine DGAT2 sequence (m86606) is depicted in SEQ ID NO:11, which is approximately 2262 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1166 nucleotides (nucleotides 207-1373 of SEQ ID NO:11). The coding sequence encodes a 388 amino acid protein (SEQ ID NO:12).

[0354] The murine DGAT2 family member sequence m58765 sequence (SEQ ID NO:5), which is approximately 1748 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 758 nucleotides (nucleotides 254-1012 of SEQ ID NO:5). The coding sequence encodes a 252 amino acid protein (SEQ ID NO:6).

[0355] The DGAT2 family member sequence m112023 (SEQ ID NO:15), which is approximately 1255 nucleotides long including untranslated r...

example 3

DGAT2 Family Member Gene Expression in Human and Mouse Tissues RNA Samples

[0357] Human tissue samples were either purchased from Invitrogen or were prepared from samples available at Millennium. Total RNA samples from various mouse tissues were extracted from 8 week old female mice. All mice were purchased from Jackson Labs. To investigate tissue distribution of these genes, cDNAs were prepared from RNA samples prior to Taqman analysis.

[0358] RNA was prepared using the trizol method and treated with DNAse to remove contaminating genomic DNA. cDNA was synthesized using random hexamer primers. Mock cDNA synthesis in the absence of reverse transcriptase resulted in samples with no detectable PCR amplification of the control 18S gene confirming effiecient removal of genomic DNA contamination. Taqman analysis was performed following the manufacturer's directions.

[0359] PCR probes were designed by PrimerExpress software (PE Biosystems) based on the respective sequences of murine and hu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Concentrationaaaaaaaaaa
Login to View More

Abstract

The present invention relates to compositions and methods for the diagnosis and treatment of obesity and related metabolic disorders. The invention provides isolated nucleic acids molecules, designated DGAT2 family member nucleic acid molecules, which encode diacylglycerol acyltransferase family members. The invention also provides recombinant expression vectors containing DGAT2 family member nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a DGAT2 family member gene has been introduced or disrupted. The invention still further provides isolated DGAT2 family member proteins, fusion proteins, antigenic peptides and anti-DGAT2 family member antibodies. Methods of use of the provided DGAT2 family member compositions for screening, diagnostic and therapeutic methods in connection with obesity disorders are also disclosed.

Description

BACKGROUND OF THE INVENTION [0001] Obesity, the most prevalent of body weight disorders, is the most important nutritional disorder in the western world, with estimates of its prevalence ranging from 30% to 50% within the middle-aged population. Obesity, defined as an excess of body fat relative to lean body mass, also contributes to other diseases. For example, this disorder is responsible for increased incidence of diseases such as coronary artery disease, hypertension, stroke, diabetes, hyperlipidemia, and some cancers (See, e.g., Nishina, P. M. et al., 1994, Metab. 43: 554-558; Grundy, S. M. & Barnett, J. P., 1990, Dis. Mon. 36: 641-731). Obesity is not merely a behavioral problem, i.e., the result of voluntary hyperphagia. Rather, the differential body composition observed between obese and normal subjects results from differences in both metabolism and neurologic / metabolic interactions. These differences seem to be, to some extent, due to differences in gene expression, and / or...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C12P21/06C12N9/10C07H21/04
CPCA01K2217/05C12N9/1029C12Q1/48C12Y203/0102G01N33/573G01N2333/91051G01N2800/044C07K16/40A61P3/04A61P3/06A61P3/10
Inventor GIMENO, RUTHWU, ZHIDANKAPELLER-LIBERMANN, ROSANAHUBBARD, BRIAN
Owner GIMENO RUTH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products