Laminate body, and method for manufacturing thin substrate using the laminate body

a technology of laminate body and thin substrate, which is applied in the direction of manufacturing tools, photomechanical equipment, instruments, etc., can solve the problems that the method cannot be practically used as a method of thinning a semiconductor wafer, and the wafer thickness has not yet reached a remarkable improvement, so as to prevent bubbles and dust contamination, the effect of reducing pressur

Inactive Publication Date: 2008-01-17
3M INNOVATIVE PROPERTIES CO
View PDF58 Cites 34 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009]By joining the substrate to be ground and the light transmitting support through the joining layer (comprising a cured silicone adhesive) under reduced pressure, bubbles and dust contamination are prevented from forming inside the laminated body, so that a level surface can be formed and the substrate can maintain the evenness of thickness after grinding.
[0010]In still another embodiment of the present invention, a method for manufacturing a reduced thickness substrate is provided, the method comprising preparing the above-described laminated body, grinding the substrate to a desired thickness, irradiating the photothermal conversion layer through the light transmitting support to decompose the photothermal conversion layer and thereby to separate the substrate from the light transmitting support after grinding, and peeling the joining layer from the substrate after grinding. In this method, a substrate can be ground to a desired thickness (for example, 150 μm or less, preferably 50 μm or less, more preferably 25 μm or less) on a support and after grinding, the support is separated from the substrate using exposure to radiation energy, so that the joining layer remaining on the substrate after grinding can be easily peeled off from the substrate.

Problems solved by technology

Usually, in conventional techniques of grinding the back side, or surface, of a wafer and conveying it while holding the wafer with only a backgrinding protective tape, thickness reduction can be accomplished in practice only to a thickness of about 150 micrometers (μm) because of problems such as uneven thickness of the ground wafer or warping of the wafer with protective tape after grinding.
However, this method has not yet attained a remarkable improvement over the present level of wafer thickness that may be obtained without encountering the aforementioned problems of unevenness or warping.
According to this method, a wafer can be processed to a lower thickness level as compared with the above-described method, however, the thin wafer cannot be separated from the support without breaking the wafer and therefore, this method cannot be practically used as a method of thinning a semiconductor wafer.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Laminate body, and method for manufacturing thin substrate using the laminate body
  • Laminate body, and method for manufacturing thin substrate using the laminate body
  • Laminate body, and method for manufacturing thin substrate using the laminate body

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0087]A mixture of 100.0 grams of VQM-135, 7.2 grams of SYL-Off 7678, and 4.4 milligrams of Catalyst was prepared in an amber bottle. Using a notch bar coater, a 75 micrometer thick layer of this adhesive composition was coated onto the polyimide passivation layer of a silicon wafer. A piece of LTHC glass was placed on the adhesive with the LTHC layer facing the wafer. This sandwich was passed under a UV processor (Fusion D bulb, low power, exposure time approximately 15 seconds). The UV illumination passed through the glass and cured the adhesive. Upon prying the glass off of the wafer, the adhesive layer remained adhered to the glass and removed cleanly from the polyimide surface.

example 2

[0088]A mixture of 56.0 grams of VQM-135, 42.0 grams of DMS-V31 and 140.0 grams of VQX-221 was prepared in a glass bottle. The xylenes solvent was removed using a rotary evaporator attached to a vacuum pump. To the resulting mixture was added 17.5 grams of SYL-Off 7678, and 7.7 milligrams of Catalyst. Using a notch bar coater, a 75-micrometer thick layer of this adhesive composition was coated onto the polyimide passivation layer of a silicon wafer. A piece of LTHC glass was placed on the adhesive with the LTHC layer facing the wafer. This sandwich was passed under a UV processor (Fusion D bulb, low power, exposure time approximately 15 seconds). The UV illumination passed through the glass and cured the adhesive. Upon prying the glass off of the wafer, the adhesive layer remained adhered to the glass and removed cleanly from the polyimide surface.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
thicknessaaaaaaaaaa
temperaturesaaaaaaaaaa
Login to view more

Abstract

Provided is a laminated body comprising a substrate to be ground and a support, where the substrate may be ground to a very small (thin) thickness and can then be separated from the support without damaging the substrate. One embodiment is a laminated body comprising a substrate to be ground, a curable silicone adhesive layer in contact with the substrate to be ground, a photothermal conversion layer comprising a light absorbing agent and a heat decomposable resin, and a light transmitting support. After grinding the substrate surface which is opposite that in contact with the adhesive layer, the laminated body is irradiated through the light transmitting layer and the photothermal conversion layer decomposes to separate the substrate and the light transmitting support.

Description

TECHNICAL FIELD[0001]The present invention relates to a laminated body where a substrate to be ground, such as silicon wafer, fixed on a support can be easily separated from the support, and also relates to a method for manufacturing this laminated body and a method for producing a thinned substrate.BACKGROUND[0002]In various fields, reducing the thickness of a substrate often is critical. For example, in the field of quartz devices, reducing the thickness of a quartz wafer is desired so as to increase the oscillation frequency. Particularly, in the semiconductor industry, efforts to further reduce the thickness of a semiconductor wafer are in progress to respond to the goal of reducing the thickness of semiconductor packages as well as for high-density fabrication by chip lamination technology. Thickness reduction is performed by so-called back side grinding of a semiconductor wafer on the surface opposite that containing pattern-formed circuitry. Usually, in conventional technique...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G03C5/00
CPCB24B7/228B32B37/12B32B2310/0806B32B2457/14H01L2221/68386H01L21/6836H01L2221/68327H01L2221/68381H01L21/6835Y10T428/31663B32B33/00B32B37/02
Inventor KESSEL, CARL R.BOARDMAN, LARRY D.WEBB, RICHARD J.
Owner 3M INNOVATIVE PROPERTIES CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products