Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3262results about How to "Easy to peel" patented technology

Composite structural panel with thermoplastic foam core and natural fibers, and method and apparatus for producing the same

A composite structural panel includes a cover sheet laminated onto a three-layered substrate including a thermoplastic foam core sandwiched between two composite outer layers. Each composite outer layer includes natural fibers embedded in a thermoplastic matrix. The thermoplastic material of all layers is preferably polypropylene, and the core consists of an expanded cellular polypropylene rigid foam. In a method for forming the composite structural panel, a first preheated outer layer is laminated and molded onto the foam core in a first molding step, and then the second preheated outer layer and the cover sheet are laminated and molded onto the foam core in a second molding step, with a cooling-down time allowed between the two molding steps. In this manner, each preheated outer layer provides enough heat to thermally fuse the outer layer onto the foam core, without overheating the foam core to the point of softening or melting the foam core. The low density foam core provides a spacing distance between the strong composite outer layers, and therefore the finished composite structural panel has a high strength and rigidity, and a high strength-to-weight ratio. The structural panel can be molded into any desired three-dimensional contoured configuration during the molding process.
Owner:HERBERT OLBRICH

Electronic system modules and method of fabrication

This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths of 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is used to fabricate the interconnection circuits. A polymer base layer is formed on a glass carrier with an intermediate release layer. Alternate layers of metal and dielectric are formed on the base layer, and patterned to create an array of multi-layer interconnection circuits on the glass panel. A thick layer of polymer is deposited on the interconnection circuit, and openings formed at input / output (I / O) pad locations. Solder paste is deposited in the openings to form wells filled with solder. After dicing the glass carrier to form separated interconnection circuits, IC chips are stud bumped and assembled using flip chip bonding, wherein the stud bumps on the components are inserted into corresponding wells on the interconnection circuits. The IC chips are tested and reworked to form tested circuit assemblies. Methods for connecting to testers and to other modules and electronic systems are described. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server embodiment is also described.
Owner:SK HYNIX INC

Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material

An FRP is produced using a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin is impregnated into the sheet-like reinforcing fiber substrate and also covers one surface of the sheet-like reinforcing fiber substrate, and the matrix resin impregnation ratio is within a range of 35% to 95%; a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin exists on both surfaces of the sheet-like reinforcing fiber substrate, and the portion inside the sheet-like reinforcing fiber substrate into which the matrix resin has not been impregnated is continuous; or a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein at least one surface exhibits a sea-and-island-type pattern comprising resin-impregnated portions (island portions) where the matrix resin is present at the surface and fiber portions (sea portions) where the matrix resin is not present at the surface, the surface coverage ratio of the matrix resin on those surfaces with said a sea-and-island-type pattern is within a range of 3% to 80%, and the weave intersection coverage ratio for the island portions, represented by a formula (1) shown below, is at least 40%, displays excellent external appearance, with no internal voids or surface pinholes, even when molded is conducted using only vacuum pressure.
Island portions weave intersection coverage ratio (%)=(T/Y)×100   (1)
(wherein, T represents a number of island portions that cover weave intersections, and Y represents a number of weave intersections within said reinforcing fiber woven fabric on said surface with said sea-and-island-type pattern).
Owner:MITSUBISHI RAYON CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products