Packaging Solutions

a technology for ophthalmic devices and packaging solutions, applied in the direction of packaging sterilisation, transportation and packaging, rigid containers, etc., can solve the problems of reducing shelf life and/or adverse reactions, limited the use of surfactants in packaging solutions, and many people who wear contact lenses still experience dryness or eye irritation, so as to preserve the sterility of solution and ophthalmic devices, and improve the lubricity of lenses

Inactive Publication Date: 2009-07-09
LAI YU CHIN +1
View PDF35 Cites 23 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0020](c) a container for holding the solution and ophthalmic device sufficient to preserve the sterility of the solution and ophthalmic device, wherein the solution does not contain an effective disinfecting amount of a disinfecting agent.
[0021]The aqueous packaging solutions of the present invention containing at least a hydrophilic polymer having one or more non-ethyleni...

Problems solved by technology

Furthermore, the difficulties of adding a surfactant to a packaging solution, including the possibility of lowering shelf-life and/or adverse reactions during heat sterilization, have further limited the use of surfactants in a packaging solution for the purpose of providing any possible ...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Packaging Solutions
  • Packaging Solutions
  • Packaging Solutions

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0101]Preparation of Hydroxyl Functionalized Poly(Vinyl Pyrrolidone).

[0102]To a 2-liter three-neck flask equipped with a condenser and nitrogen inlet tube was added 900 ml of 2-isopropoxyethanol (about 813.6 g, 7.812 mol, Aldrich Chemical Company), 30 mol of freshly distilled NVP (about 31.35 g, 0.282 mol) and AIBN (0.317 g; 1.930 mmol). The contents were bubbled vigorously with nitrogen for 1 hour. Then, while under nitrogen blanket, the contents were heated at 80° C. for two days. The solution was ultra filtrated using a 1000 NMWL RC film. Next, the solvent was removed using a rotavapor at 50 to 60 rpms. THF (100 ml) was added to dissolve the product and then tin 2000 mL ether was poured to precipitate the product. The product was dried in a vacuum oven to give 30.85 g of product. The hydroxyl functionalized PVP had a number average molecular weight (Mn) of 1357 as determined by titration.

example 2

[0103]Preparation of Acid-Terminated PVP.

[0104]To a thoroughly dried 500-mL round bottom flask equipped with nitrogen inlet tube and drying tube, is charged 200 mL of anhydrous THF. Next, succinic anhydride (2.00 g, 0.02 mole) and the hydroxyl functionalized poly(vinyl pyrrolidone) (13.57 g, 0.010 mole) of Example 1 are added to the flask. The contents are heated under reflux for 48 hours with stirring. The solution is concentrated to 100 mL and is poured into 2000 mL of ether to precipitate the product.

example 3

[0105]Preparation of Poly (Vinyl Pyrrolidone-co-allyl Alcohol).

[0106]To a 1000 ml three-neck flask equipped with a condenser and nitrogen inlet tube was added 250 mL of distilled water, 45.51 g (409.5 mmole) of freshly distilled NVP, 1,1725 g (20.19 mmole) of allyl alcohol and AIBN (0.47 g; 2.862 mmol). The contents were bubbled vigorously with nitrogen for 1 hour. While under nitrogen blanket and with stirring, the contents were heated up to 70° C. for two days. The solution became viscous even after one hour of heating. After two days, the product was recovered by freeze drying. The product had a Mn of 1,020,00, a Mw of 1,355,000 and a polydispersity of 1.327, as determined by Size Exclusion Chromatography. It was found that there was 1 allyl alcohol per 100 vinylpyrrolidone units.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Packaging systems for storing ophthalmic devices such as contact lenses and to methods for packaging such ophthalmic devices with solutions to improve the comfort of the lenses during wear are disclosed. A packaging system includes an ophthalmic device stored in an aqueous packaging solution comprising a hydrophilic polymer having one or more non-ethylenically-unsaturated carboxylic acid terminal groups.

Description

[0001]This application claims benefit of provisional patent application No. 61 / 019,864 filed Jan. 9, 2008, which is incorporated by reference herein.BACKGROUND OF THE INVENTION[0002]1. Technical Field[0003]The present invention generally relates to packaging solutions for ophthalmic devices such as contact lenses.[0004]2. Description of Related Art[0005]Blister-packs and glass vials are typically used to individually package each soft contact lens for sale to a customer. Saline or deionized water is commonly used to store the lens in the blister-packs, as mentioned in various patents related to the packaging or manufacturing of contact lenses. Because lens material may tend to stick to itself and to the lens package, packaging solutions for blister-packs have sometimes been formulated to reduce or eliminate lens folding and sticking. For this reason, polyvinyl alcohol (PVA) has been used in contact-lens packaging solutions.[0006]It has been stated that if a lens is thoroughly cleane...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A45C11/04B65B55/22
CPCA61L12/086B65B55/02B65B25/008
Inventor LAI, YU-CHINLANG, WEIHONG
Owner LAI YU CHIN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products