Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Surgical implantable stabilizer sling for basal joint arthroplasty

Inactive Publication Date: 2010-04-29
DELSIGNORE JEANNE L
View PDF21 Cites 139 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0031]This technique and implant design provides a simpler, less invasive method for basal joint reconstruction with less donor site morbidity, earlier institution of motion post-operatively, faster healing time and resumption of normal activities, and none of the complications which are uniquely associated with other techniques such as improper drill hole placement or fracture associated with the creation of bone tunnels necessary for passing tendon grafts, malalignment of metal or synthetic implant device into bone, implant breakage, pin tract complications, including infection, hypersensitivity or chronic pain from neuroma formation, as well as the potential loss of function including stiffness of the wrist and hand, which may result from more extensive surgery and lengthy immobilization required in procedures which involve sacrificing and utilizing tendons for stabilizing the reconstruction. The technique of this concept appropriately addresses the larger patient population who suffer from advanced, pan-trapezial, basal joint arthritis by removing the entire trapezium and stabilizes the thumb by tethering it to the base of the index metacarpal, maintaining first web space abduction alignment and preserves the resection arthroplasty space by minimizing proximal migration. This method could also be appropriate for patients with earlier stage trapezio-metacarpal arthritis, as the stabilizer sling insertion method and anchorage with a suture anchor into the radial base of the index metacarpal and passage of the suture through two small holes created in the volar-radial articular base of the thumb metacarpal via curved, slightly curved or straight swaged-on needles, or with a second anchor into the base of the thumb metacarpal articular surface, can be accomplished through a small incision, suitable even if the surgeon chooses a hemi-trapeziectomy (partial distal resection) procedure.
[0032]One aspect of this disclosure is directed to the fact that utilization of an intra-articular basal joint stabilizer sling, interwoven with strong non-absorbable or long-lasting absorbable suture, firmly anchored to fixed points of bony insertion at radial base of the index metacarpal ulnarly, and the volar-radial articular base of the thumb metacarpal radially avoids the need for sacrificing a functioning tendon, in part or in whole.
[0033]Another aspect of this disclosure is the distinct advantage of performing basal joint reconstruction which firmly tethers the base of the thumb metacarpal in close approximation to the base of the index metacarpal, thereby balancing the thumb in an abducted and distally tethered position, thereby restoring the function of the incompetent volar oblique ligament, maintaining joint arthroplasty space and preventing proximal migration.
[0034]Yet another aspect of this disclosure provides the ability to perform basal pint arthroplasty through a smaller incision which does not cross the wrist flexion crease, without the need for sacrificing and re-directing tendons through bone tunnels. This method avoids the need for stabilization with pins and thus avoids the well-known complications and morbidities associated with pin fixation.
[0035]Still another aspect of this disclosure provides the fact that, since no tendons are harvested and the incision remains distal to the wrist flexion crease, early active range of motion can commence at 12-14 days post-operatively, which will be associated with an earlier return of wrist motion, less stiffness, and more rapid recovery in the early healing phases of rehabilitation.
[0036]Yet another aspect of this disclosure provides the fact that the implantation of a basal joint stabilizer sling can be more easily performed by hand surgeons, with greater reliability of outcomes, due to the simplicity of the design, firm bony anchorage into fixed points of insertion, ease of performance and anticipated uniform results, as the technique is not as technically demanding as many of the previously described soft tissue techniques. This technique, when applied with the preferred embodiment design, does not require the precise formation of bone tunnels for tendon passage or need for tendon sacrifice and transfer. There is far less risk of technical failure when compared to artificial metallic, synthetic, or silicone joint implants due to improper bone cuts and potential malalignment of components, since artificial joint replacement procedures do require a steep learning curve, are more costly, and have several pitfalls associated with improper implantation technique when inserting metallic or artificial prostheses into osteoporotic bone that can lead to implant failure, loosening, malalignment, fracture, and subluxation. Even with meticulous technique, artificial joint implants have had a high failure rate.

Problems solved by technology

This condition causes joint instability and subluxation, due to incompetence of an important stabilizing structure, the volar oblique ligament, resulting in dorsal subluxation, adduction contracture, and subsequent compensatory metacarpal-phalangeal joint hyperextension deformity.
As arthritis progresses, patients suffer from load-related pain, affecting pinching and gripping activities, and experience weakness, severe dysfunction, reduced mobility, and loss of functionality.
Many of the past described surgical methods require temporary pin fixation of the joint, subsequent pin removal and have been associated with pin tract complications, such as infection, nerve damage, neuroma formation, and these methods which utilize more extensive and often multiple incisions cause increased surgical morbidity.
This procedure can provide pain relief, but is associated with persistent collapse deformity, proximal migration, and weakness.
Each of these methods have had significant failure rates and complications related to implant failure, fracture of the bone interfaces, particulate synovitis, dislocation and loss of stability over time.
Additional problems with the recently developed synthetic fabric inserted into the basal joint include irritation over the synthetic fabric, which is secured to the dorsal base of the thumb metacarpal, potential fixation problems, as well as the fact that the synthetic fabric design only addresses the distal articular surface of the basal joint, leaving the proximal joint (scaphoid-trapezial joint) interface intact.
This particular form of synthetic implant is limited in use for patients with very early arthritis, involving only the distal carpal-metacarpal joint and is not appropriate for the larger cohort of arthritic patients who suffer from arthritis in a more extensive, pan-trapezial (surrounding the trapezium on all articular surfaces) fashion.
Long term results have been excellent with regard to pain relief, but the healing process is lengthy, incisions are extensive and multiple, subsidence with loss of arthroplasty space has been reported, pin tract complications do occur, aid the technique is technically demanding, lengthy and requires sacrificing a normal, functioning wrist flexor tendon.
This technique does not address ligament reconstruction to restore function of the incompetent volar oblique ligament, and includes the disadvantages and risks of pin fixation.
This technique may not be appropriate for younger, higher demand patients.
This technique utilizes only one distally based slip of the abductor pollicis longus tendon which does not sacrifice it's function, but does require an incision that extends proximal to the wrist flexion crease and can be associated with some residual wrist stiffness, as wrist immobilization is recommended for four weeks post-operatively which can result in a longer period of recovery of wrist and hand motion.
This technique does require excessive surgical skill, as it is technically demanding as it requires the skill of back-handed suture passing within a small arthroplasty space.
In the case of artificial joint replacement surgery, several complications may be encountered; including fracture, bosening, subluxation or dislocation, particulate synovitis and other reported complications that may result in eventual failure of the implant.
Additionally, surgical implants designed for other parts of the human body have been difficult to adapt to basal joint arthroplasty, due to the complex nature of the anatomy of the basal joint, the arthritic deformity of subluxation and adduction contracture that occurs with progression of basal joint arthritis, and the cantilever forces applied across the metacarpal base.
More complex soft tissue reconstructive methods for basal joint arthroplasty can be associated with the potential for greater short and occasionally long-term impairment of the hand, requiring prolonged rehabilitation.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Surgical implantable stabilizer sling for basal joint arthroplasty
  • Surgical implantable stabilizer sling for basal joint arthroplasty
  • Surgical implantable stabilizer sling for basal joint arthroplasty

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0050]The techniques and apparatus disclosed herein enables surgeons to treat basal joint arthritis with a reconstructive method that allows for simplicity, ease of performance, more predictable outcome among surgeons of varied backgrounds, training and ability, shorter operative time, lower surgical site morbidity, smaller incision, no need for harvesting and sacrificing of functioning tendons, no pin fixation, faster recovery, and earlier return to activities of daily living.

[0051]This technique and implant design will provide a simpler, less invasive method for basal joint reconstruction with less donor site morbidity, earlier institution of motion post-operatively, faster healing time and resumption of normal activities, and none of the complications that are uniquely associated with other techniques.

[0052]The benefits of these concepts are enhanced by meeting the goals of basal joint reconstruction which include removal of the entire arthritic interface, particularly important ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The concepts disclosed herein offer a new simple and reliable reconstructive option for the treatment of first carpal-metacarpal joint (basal joint) arthritis and consists of an intra-articular basal joint stabilizer sling combined with a surgical method of implantation.

Description

[0001]This application claims priority from U.S. Provisional Application 61 / 197,060, filed on Oct. 23, 2008, which is incorporated by reference in its entirety.FIELD OF THE INVENTION[0002]This application relates to an implantable stabilizer sling for the surgical repair and reconstruction of joints, preferably of the hands, in particular the basal joint.BACKGROUND OF THE INVENTION[0003]Degenerative osteoarthritis of the first carpal-metacarpal joint (basal joint) of the thumb is a common, disabling condition, especially in middle-aged women. Investigations show that about 25% of all women and 8% of men in their fifties complain of pain at the base of the thumb, secondary to osteoarthritis. This condition causes joint instability and subluxation, due to incompetence of an important stabilizing structure, the volar oblique ligament, resulting in dorsal subluxation, adduction contracture, and subsequent compensatory metacarpal-phalangeal joint hyperextension deformity. As arthritis pr...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61F2/42
CPCA61B17/0401A61B17/82A61B17/826A61F2002/4253A61F2/08A61F2/0811A61F2/4241A61B2017/0427A61B17/06066A61B17/06166A61B2017/0464
Inventor DELSIGNORE, JEANNE L.
Owner DELSIGNORE JEANNE L
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products