Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Compositions providing improved functionalization of terminal anions and processes for improved functionalization of terminal anions

a terminal anions and functionalization technology, applied in the field of compounding providing improved processes for improving the functionalization of terminal anions, can solve the problems of low capping efficiency, low efficiency of functionalization reactions, and inability to meet the requirements of low-temperature conditions on an industrial scale, so as to improve the functionalization efficiency of living polymer anions and the effect of increasing the efficiency of reactions

Inactive Publication Date: 2005-02-22
FMC CORP
View PDF36 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention provides compositions capable of increasing efficiencies in the functionalization of living polymer anions. The compositions include as a component one or more additives, such as an alkali halide or alkali alkoxide. The inventors have unexpectedly found that the additives are capable of improving the efficiency of reactions between polymer anions and electrophiles, as compared to similar reactions in the absence of an additive. In one aspect of the invention, the compositions include one or more additives and one or more anionic polymerization initiators. Exemplary anionic polymerization initiators include non-functionalized and functionalized organoalkali metal initiators. In another aspect of the invention, the compositions include one or more additives and one or more electrophiles useful for functionalizing living polymers.
Processes for improving living polymer anion functionalization are also provided. In this aspect of the invention, a living polymer anion is functionalized using a suitable electrophile in the presence of one or more additives as described above. Higher yields of functionalized polymers were observed when the additive was employed. In addition, the employment of the additive allowed the functionalization to be performed in hydrocarbon solvent at room temperature. Further, these reaction conditions are much less expensive on a commercial scale, as compared to the prior art. The invention can also be used with a variety of monomers and / or functionalizing agents. For example, it was discovered that the less expensive, and more readily available, alkyl chlorides afford efficient functionalization when an additive is employed.

Problems solved by technology

Some of these functionalization reactions are not very efficient, particularly for the preparation of telechelic polymers, due to the formation of a thick gel during the functionalization.
This leads to lower capping efficiency.
To obtain efficient functionalization, these functionalization reactions are conducted in tetrahydrofuran (THF) at −80° C. THF, however, is an expensive solvent, and these low-temperature conditions are not practical on an industrial scale.
In addition, efficient functionalization of polymer anions was only observed with expensive alkyl bromides.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compositions providing improved functionalization of terminal anions and processes for improved functionalization of terminal anions
  • Compositions providing improved functionalization of terminal anions and processes for improved functionalization of terminal anions
  • Compositions providing improved functionalization of terminal anions and processes for improved functionalization of terminal anions

Examples

Experimental program
Comparison scheme
Effect test

example 1

Preparation of Dimethylaminopropylpolystyrene

A 250 ml. glass reactor was equipped with two break-seal reagent ampoules, a sampling port attached with a Teflon® stopcock, an inlet tube fitted with a septum cap, and a magnetic stir bar. This reactor was flame sealed to a high vacuum line, and evacuated at 120° C. for 8 hours. The flask was refilled with dry argon, and allowed to cool to room temperature. The reactor was charged with purified benzene (90 ml.). S-butyllithium, 0.149 grams (2.3 mmole, 1.45 M in cyclohexane, 1.6 mL) was then added via syringe. Purified styrene monomer (9.30 grams, 89.3 mmoles) was added from a break-seal ampoule. The reaction mixture was kept for 6 hours at room temperature. The living poly(styryl)lithium was then transferred into an ampoule and the known amount of residual solution was terminated with degassed methanol from the last ampoule to obtain a base polymer sample. A second 250 ml. glass reactor was equipped with three break-seal reagent ampoules...

example 2

Preparation of Dimethylaminopropylpolyisoprene

A 250 ml. glass reactor was equipped with two break-seal reagent ampoules, a sampling port attached with a Teflon® stopcock, an inlet tube fitted with a septum cap, and a magnetic stir bar. This reactor was flame sealed to a high vacuum line, and evacuated at 120° C. for 8 hours. The flask was refilled with dry argon, and allowed to cool to room temperature. The reactor was charged with purified cyclohexane (90 ml.). S-Butyllithium, 0.149 grams (2.3 mmole, 1.45 M in cyclohexane, 1.6 mL) was then added via syringe. Purified isoprene monomer (9.00 grams, 132.1 mmoles) was added from a break-seal ampoule. The reaction mixture was kept for 6 hours at room temperature. The living poly(isoprenyl)lithium was then transferred into an ampoule and the known amount of residual solution was terminated with degassed methanol from the last ampoule to obtain a base polymer sample. A second 250 ml. glass reactor was equipped with three break-seal reagen...

example 3

Preparation of Alpha-Hydroxy-Omega-Dimethylaminopropylpolystyrene

A 500 ml. glass reactor was equipped with two break-seal reagent ampoules, a sampling port attached with a Teflon® stopcock, an inlet tube fitted with a septum cap, and a magnetic stir bar. This reactor was flame sealed to a high vacuum line, and evacuated at 120° C. for 8 hours. The flask was refilled with dry argon, and allowed to cool to room temperature. The reactor was charged with purified benzene (250 ml.). 3-(1,1-Dimethylethoxy)-1-propyllithium, chain extended with two equivalents of isoprene, 0.90 grams (3.5 mmole, 0.52 M in cyclohexane, 6.7 mL) was then added via syringe. Purified styrene monomer (28.15 grams, 89.3 mmoles) was added from a break-seal ampoule. The reaction mixture was kept for 6 hours at room temperature. The living poly(styryl)lithium was divided equally into three calibrated ampoules for reaction with the alkyl chlorides. The residual solution was terminated with degassed methanol from the l...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
Login to View More

Abstract

Compositions including one or more anionic polymerization initiators and one or more additives for improving functionalizing efficiency of living polymer anions are disclosed. The present invention also provides compositions including one or more electrophiles and one or more additives for improving functionalizing efficiency of living polymer anions. Novel electrophiles and processes for improving polymer anion functionalization efficiencies are also disclosed.

Description

FIELD OF THE INVENTIONThis invention relates to novel compositions of an anionic polymerization initiator and an additive which enhance functionalization of living polymer anions; novel compositions of electrophiles and an additive which enhance functionalization of living polymer anions; and processes which employ these compositions, or an additive, for improved efficiency in the functionalization of living polymer anions.BACKGROUND OF THE INVENTIONPolymers that contain terminal functional groups are industrially important. One technique to prepare these terminally functionalized polymers is by reaction of a suitable electrophile with a living polymer anion. For numerous examples of end group functionalization chemistry, see Hsieh, H. L.; Quirk, R. P. Anionic Polymerization: Principles and Practical Applications; Marcel Dekker: New York, N.Y., 1996, pages 261-306.Some of these functionalization reactions are not very efficient, particularly for the preparation of telechelic polymer...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): C08C19/00C08F8/00C08F8/42C08C19/44
CPCC08C19/44C08F8/42C08F12/00
Inventor QUIRK, RODERIC PAULLEE, YOUNG JOONSCHWINDEMAN, JAMES ANTHONYLETCHFORD, ROBERT JAMES
Owner FMC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products