Organic electroluminescent device and preparation method thereof

An electroluminescent device and electroluminescent technology, which are applied in the fields of electro-solid devices, semiconductor/solid-state device manufacturing, electrical components, etc., can solve problems such as low luminous efficiency, improve luminous efficiency, improve electron transfer rate, and improve excitons. The effect of compound chance

Inactive Publication Date: 2014-12-03
OCEANS KING LIGHTING SCI&TECH CO LTD +2
View PDF6 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the luminous efficiency of organic electroluminescent devices is low at present

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Organic electroluminescent device and preparation method thereof
  • Organic electroluminescent device and preparation method thereof
  • Organic electroluminescent device and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

preparation example Construction

[0036] Please also see figure 2 , the preparation method of the organic electroluminescent device 100 of an embodiment, it comprises the following steps:

[0037] Step S110 , sequentially vapor-depositing the hole injection layer 20 , the first hole transport layer 32 , the first light emitting layer 34 and the first electron transport layer 36 on the surface of the anode.

[0038] The anode 10 is indium tin oxide glass (ITO), aluminum zinc oxide glass (AZO) or indium zinc oxide glass (IZO), preferably ITO.

[0039] In this embodiment, before the hole injection layer 20 is formed on the surface of the anode 10, the anode 10 is pretreated. The pretreatment includes: performing photolithography on the anode 10, cutting it into the required size, using detergent, deionized Water, acetone, ethanol, and isopropanone were each ultrasonically cleaned for 15 minutes to remove organic pollutants on the surface of the anode 10 .

[0040] The hole injection layer 20 is formed on the s...

Embodiment 1

[0056] The structure prepared in this example is ITO / MoO 3 / TAPC / BCzVBi / TAZ / Li 2 CO 3 :PrO 2 : PC61BM / TCTA / BCzVBi / TAZ / LiF / Al organic electroluminescent device. Wherein, " / " indicates a stacked structure, and ":" indicates doping or mixing, and the following embodiments are the same.

[0057] First carry out photolithography treatment on ITO, cut it into the required size, and then use detergent, deionized water, acetone, ethanol, and isopropanol to sonicate for 15 minutes each to remove organic pollutants on the glass surface; evaporate the hole injection layer , the material is MoO 3 , with a thickness of 30nm; vapor-deposited the first hole transport layer, made of TAPC, with a thickness of 30nm; vapor-deposited the first light-emitting layer, made of BCzVBi, with a thickness of 20nm; 180nm; the evaporated charge generation layer is formed by doping fullerene materials and lanthanide oxides and lithium salts doped in fullerene materials, the fullerene material is PC61BM...

Embodiment 2

[0062] The structure prepared in this example is AZO / V 2 o 5 / TAPC / ADN / TPBi / LiF:Pr 2 o 3 :PC71BM / TAPC / ADN / TAZ / CsN 3 / Pt organic electroluminescent devices.

[0063] First, the AZO glass substrate was washed with detergent, deionized water, and ultrasonic for 15 minutes to remove organic pollutants on the glass surface; the hole injection layer was prepared by evaporation, and the material was V 2 o 5 , the thickness is 80nm; the first hole transport layer is prepared by evaporation, the material is TAPC, and the thickness is 60nm; the first light-emitting layer is prepared by evaporation, the material is ADN, and the thickness is 5nm; the first electron transport layer is prepared by evaporation, and the material is TPBi, with a thickness of 200nm; the evaporated charge generation layer is formed by doping fullerene materials and lanthanide oxides and lithium salts doped in fullerene materials. The fullerene material is PC71BM, and the lanthanide oxide materials are for ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Provided is an organic electroluminescent device which comprises an anode, a hole injection layer, a first hole transmission layer, a first luminescent layer, a first electron transmission layer, a charge generation layer, a second hole transmission layer, a second luminescent layer, a second electron transmission layer, an electron injection layer and a cathode which are laminated in turn. Material of the charge generation layer comprises fullerene material, and lanthanide oxide and lithium salt which are doped in fullerene material, wherein mass ratio of lanthanide oxide to fullerene material is 1:100-1:10, and mass ratio of lithium salt to fullerene material is 1:5-3:5. The aforementioned organic electroluminescent device is relatively high in luminescence efficiency. The invention also provides a preparation method for the organic electroluminescent device.

Description

technical field [0001] The invention relates to an organic electroluminescence device and a preparation method thereof. Background technique [0002] The luminescence principle of organic electroluminescent devices is based on the action of an external electric field, electrons are injected from the cathode to the lowest unoccupied molecular orbital (LUMO) of organic matter, and holes are injected from the anode to the highest occupied molecular orbital (HOMO) of organic matter. Electrons and holes meet, recombine, and form excitons in the light-emitting layer. Excitons migrate under the action of an electric field, transfer energy to the light-emitting material, and excite electrons to transition from the ground state to the excited state. The excited state energy is deactivated by radiation to generate photons , releasing light energy. However, the luminous efficiency of organic electroluminescent devices is relatively low at present. Contents of the invention [0003]...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): H01L51/50H01L51/54H01L51/56
CPCH10K85/141H10K85/215H10K85/6572H10K50/00H10K71/00
Inventor 周明杰王平黄辉陈吉星
Owner OCEANS KING LIGHTING SCI&TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products