Molecular marker of main active gene BLS1 of paddy rice resisting bacterial streak and application of molecular marker

A major gene and molecular marker technology, applied in the field of molecular biology, can solve the problems of less research on molecular genetic mechanism and lack of in-depth molecular basic research, and achieve the effect of clear location, convenient identification and cost saving.

Active Publication Date: 2016-12-21
广西壮族自治区农业科学院水稻研究所
View PDF4 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Most of the studies on the main effect genes of resistance to thin stripe disease are concentrated on the screening of resistance sources and the analysis of resistance genetics, while there are few studies on the molecular genetic mechanism of disease resistance genes, especially the molecular basis research such as the positioning of related genes is not yet in-depth.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Molecular marker of main active gene BLS1 of paddy rice resisting bacterial streak and application of molecular marker
  • Molecular marker of main active gene BLS1 of paddy rice resisting bacterial streak and application of molecular marker
  • Molecular marker of main active gene BLS1 of paddy rice resisting bacterial streak and application of molecular marker

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0050] 1. The origin of the main gene BLS1:

[0051] Huang Dahui et al. (2008) first found that common wild rice DP3 is resistant to bacterial streak type III by using resistance identification screening (Huang Dahui, Cen Zhenlu, Liu Chi, He Wenai, Chen Yingzhi, Ma Zengfeng, Yang Lang, Wei Shaoli, Liu Yali, Huang Siliang, Yang Xinqing, Li Rongbai. Screening and genetic analysis of wild rice bacterial streak resistance resources. Journal of Plant Genetic Resources, 2008, 9(1):11-14). He et al. (2012) showed through genetic analysis that DP3 carries a pair of recessive bacterial stripe disease resistance genes and tentatively named it bls1, and located the gene in the 4.0-cM region between RM587 and RM510 (He W A, Huang D H*,Li R B,Qiu Y F,Song J D,Yang H N,Zheng J X,Huang Y Y,Li X Q,Liu C,ZhangY X,Ma Z F and Yan Y. Identification of a resistance gene bls1to bacterial leaf streak in wild rice Oryza rufipogon Griff . Journal of Integrative Agriculture, 11(6):962-969). This gene...

Embodiment 2

[0067] Example 2: Verification of Molecular Markers

[0068] 1. Materials and methods

[0069] 1.1 Materials

[0070] Negative varieties: 10 copies, 8 copies of non-insect-resistant materials in the breeding combination of susceptible variety 93-11, resistant parent DP3, and DP3X 93-11.

[0071] Positive varieties: 9 insect-resistant materials in the breeding combination of insect-resistant varieties DP3 and 93-11X DP3.

[0072] Molecular marker primers: RM19382, RM 19391, RM19400, RM 19402, RM510.

[0073] 1.2 Method

[0074] Genomic DNA of rice sample was extracted by CTAB extraction method (method is the same as in Example 1). Sample DNA was amplified with primers RM19382, RM19391, RM19400, RM19402 and RM510, respectively. The reaction system included 0.10 μM primers, 250 μM dNTPs, 1× PCR reaction buffer (50 mM KCl, 10 mM Tris-HCl pH8.3, 1.5 mM MgCl 2 ), 100ng of DNA template, 1UTaq enzyme. The reaction program was: pre-denaturation at 94°C for 5 minutes, cycle (94°C...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention discloses a molecular marker of a main active gene BLS1 of paddy rice resisting bacterial streak and an application of the molecular marker. A bacterial streak resistant backcross inbred line obtained from deriving an ordinary wild paddy rice resistant source DP3 is crossed with a bacterial streak-infected nonglutinous rice variety 93-11 to obtain an offspring F1 hybrid and then the hybrid is self-fertilized to obtain F2 generation, genetic linkage analysis is performed for a gene type and corresponding resistant phenotype of each family of F2, and the bacterial streak-resistant main active gene BLS1 sourced from the ordinary wild paddy rice DP3 is detected. Molecular markers capable of being used for breeding such as RM19382, RM19391, RM19400, RM19402 and RM510 are obtained. The molecular markers can effectively detect whether the bacterial streak-resistant ordinary wild paddy rice DP3 and erivative varieties (lines) thereof contain a main active gene site, thereby greatly improving the selection efficiency of the bacterial streak resistant paddy rice, and obtaining the bacterial streak resistant paddy rice variety containing the BLS1 gene.

Description

【Technical field】 [0001] The invention relates to the field of molecular biology, in particular to a molecular marker of the main gene BLS1 for resistance to bacterial spot disease of rice. 【Background technique】 [0002] Bacterial streak disease (referred to as thin stripe disease) is caused by the pathogen Xanthomonas oryze pv. Oryzicola (Xoc), and is an important rice disease. The disease can cause a 32% loss of rice yield in an outbreak year. Cultivation measures and the use of pesticides are effective ways to prevent and control thin stripe disease. However, using resistant resources to breed resistant varieties is the most economical and effective way to control the disease. Genetic analysis showed that there were two different types of resistance resources, such as major genes and quantitative trait loci (Quantitative trait locus, QTL). At present, there are few researches on the application of molecular markers of the major genes of anti-bacterial stripe disease. ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): C12Q1/68C12N15/11
Inventor 黄大辉秦钢马增凤刘驰罗同平张月雄岑贞陆
Owner 广西壮族自治区农业科学院水稻研究所
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products