Motor and its permanent magnet

Inactive Publication Date: 2004-10-14
AICHI STEEL
View PDF22 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

In recent years, there has been a demand for the miniaturization of such small-sized motors, however this has not been realized because sintered ferrite magnets with thin enough wall thickness cannot be manufactured due to the shrinkage of sintered ferrite magnets during sintering.
Moreover, high-output motors could not be realized as sintered ferrite magnets have a low attractive force.
In addition, if one attempts to make a large-size motor in order to achieve high output, there is no alternative but to make a 4-pole motor, as the arc length is too great for a 2-pole motor.
In this case of a 4-pole motor using sintered ferrite magnets, the size and weight are increased, and it is not possible to improve the motor performance index (torque constant/volume).
Furthermore, as the shape of sintered ferrite magnets differs depending on the environmental conditions, such as humidity and the sintering conditions, it is difficult to achieve tiled sintered ferrite magnets of exactly the same dimensions.
Because of this, the problem of squeaking and rattling can occur due to uneven torque resulting from errors in symmetry of the magnetic field made during precision arrangement.
However, these magnets were not adopted because when motor manufacturers simply tried to replace the ferrite magnets of conventional small-sized brush motors with these magnets having four times the maximum energy product, the motor propertie

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Motor and its permanent magnet
  • Motor and its permanent magnet
  • Motor and its permanent magnet

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0105] The abovementioned embodiments are one group of examples of practical forms of the present invention, but many other modified examples can be thought of. For example, in the abovementioned embodiment the anisotropic rare earth bonded magnet 13 was magnetized in a 4-pole configuration, but greater than 4 poles is also acceptable. For example, 6poles or8poles are acceptable. If the number of magnetic poles is increased, the magnetic path length gets shorter and therefore the magnetic flux across the armature coils is increased. Moreover, because it is possible to easily magnetize anisotropic rare earth bonded magnet 13, a higher power, quiet motor can be realized.

[0106] Moreover, in the abovementioned embodiment, the anisotropic rare earth bonded magnet 13 is made by resin forming, but it is also acceptable to further process the magnet after resin forming via trimming, etc. for higher precision. With increased dimension precision, a quiet motor without uneven torque is possibl...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The challenge to be solved by the present invention is the miniaturization of a 1-300 W class of motor. This can be achieved by using a hollow-cylinder shaped anisotropic bonded magnet magnetized in a 4-pole configuration. The anisotropic bonded magnet has a maximum energy product approximately 4 times greater than the conventional sintered ferrite magnets. The use of a 4-pole configuration shortens the magnetic path length of the individual magnetic circuits and the magnetic force contributing to the torque is increased. When the torque is kept the same as in the conventional motor, the length of the electromagnetic rotor core and the axial magnet length can be reduced. In this fashion, 1-300 W class motors can be reduced in size.

Description

[0001] This is a patent application based on Japanese patent applications No. 2002-276194 and No. 2001-375159which were filed on Sep. 20, 2002 and Dec. 10, 2001, respectively, and which are incorporated herein by reference.[0002] 1. Field of the Invention[0003] The present invention is related to a DC brush motor and a permanent magnet used within. In particular, the present invention is related to a DC brush motor and associated permanent magnet whose small size and high torque are made possible by the use of an anisotropic rare earth bonded magnet as the permanent magnet. The present invention is very effective for example in 1-300 W high-performance small-size DC brush motor applications.[0004] 2. Background Art[0005] [Patent Document 1][0006] Published Unexamined Patent Application Number 2001-7691A[0007] [Patent Document 2][0008] U.S. Pat. No. 2,816,668[0009] [Patent Document 3][0010] U.S. Pat. No. 3,060,104[0011] Prior to 1960, small-sized motors did not use magnets, but were ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H01F7/02H02K1/02H02K1/17H02K15/03H02K23/04
CPCH01F7/021H02K23/04H02K1/17H02K1/02
Inventor HONKURA, YOSHINOBUHASHIMOTO, YOJIMITARAI, HIRONARI
Owner AICHI STEEL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products