Gas generant compositions
a technology of compositions and gas generants, applied in the field of gas generation systems, can solve the problems of unacceptably high levels of toxic gases, poor thermal stability of nonazide gas generant compositions, and the amount and physical nature of solid residues formed during combustion, so as to minimize solid combustion products and maximize gas combustion products
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
example 1
[0029] A gas generant composition of the present invention is formed by first synthesizing a polyvinyltetrazole. A generic substituted tetrazole and vinyl acetate are combined to vinylate the tetrazole. The vinylated tetrazole is added to a molar equivalent of mercury acetate and boron trifluoride-etherate for polymerization thereof. The resulting products may then be separated by oil distillation for example. The polyvinyltetrazoles illustrated in the drawings may be formed in the same way. Reaction 3 exemplifies the process described above.
example 2
[0030] A gas generant composition of the present invention is formed by first synthesizing a polyvinyltriazole. A generic substituted triazole metal or nonmetal salt is added to a molar equivalent amount of a free radical brominating reagent such as n-bromo-succinamide and to a benzoyl-peroxide free radical initiator to form a brominated triazole. The brominated triazole is then added to triphenyl phosphine to form a Wittig salt group on the substituted triazole salt. The triazole salt is then added to a metal or nonmetal organic or inorganic base, and also to formaldehyde to form a vinylated triazole salt. The vinylated triazole salt is next added to a free radical polymerization reagent such as azoisobutyronitrile and a catalytic amount of a cationic polmerizer or Ziegler-Natta catalyst such as a metal or titanium complex. Reaction 2 exemplifies the process described above wherein the synthesis of poly(vinyl-1,2,4-triazole) is described.
example 3
[0031] A gas generant composition of the present invention is formed by first synthesizing a polyvinyldiazole. An alkenol containing two —OH groups is added to acetic anhydride to form a substituted diazole. The substituted diazole is then added to a molar equivalent amount of a free radical brominating reagent such as n-bromo-succinamide and to a free radical initiator such as benzoyl-peroxide to form a brominated diazole. The substituted diazole is then added to triphenyl phosphine to form a Wittig salt group on the substituted diazole salt. The diazole salt is then added to a metal or nonmetal organic or inorganic base, and also to formaldehyde to form a vinylated diazole salt. The vinylated diazole salt is next added to a free radical polymerization reagent such as azoisobutyronitrile and a catalytic amount of a cationic polymerizer or Ziegler-Natta reagent such as a metal complex. Reaction 1 exemplifies the process described above wherein the synthesis of poly(vinyl-1,2,5-oxadi...
PUM
Property | Measurement | Unit |
---|---|---|
temperature | aaaaa | aaaaa |
weight percent | aaaaa | aaaaa |
composition | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com