Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Compositions and methods for detecting pathogen infection

a technology of pathogen infection and composition, applied in the field of compositions and methods for detecting pathogen infection, can solve the problems of lack of sensitivity required for detecting early stage or low level infection, not generally used as diagnostics, and the syphilis does not account for the binding of some antibodies to the complex formed

Inactive Publication Date: 2006-03-23
BIOKIT +1
View PDF36 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0088]FIG. 4 illustrates an advantage of the present invention since conventional Tp17 antibody detection kits do not detect antibodies to the Tp17-lysozyme complex. In one embodiment, the invention features a kit containing a Tp17-like polypeptide and a lysozyme polypeptide. Such kits are capable of detecting antibodies to Tp17 alone, lysozyme alone, or a Tp17-lysozyme complex, if present.
[0089]FIG. 5 illustrates a far western blot lysozyme-protein interaction assay comprising the following five steps: (1) immobilization of purified lysozyme onto a solid support; (2) probing of the solid support with a ligand for lysozyme (e.g., GST-Tp17); (3) binding of GST-Tp17 with goat anti-GST antibody; (4) binding of the goat antibody with an anti-goat alkaline phosphatase conjugate; and (5) staining with nitroblue tetrazolium / bromochloro indolyl phosphate alkaline phosphatase chromogenic substrate (BT / BCIP).
[0090]FIG. 6 illustrates the amino acid (SEQ ID NO:29) and nucleotide (SEQ ID NO:30) sequence of GST-Tp17 fusion protein. The sequences corresponding to the GST moiety and to Tp17 are represented in italics and bold, respectively. Numbered lines, SEQ ID NO: 30, represent the sense DNA strand; the antisense or RNA strand is below the sense strand.
[0091]FIG. 7 illustrates the Tp17-HIS expression construct pET24a_Tpp17His. This vector derives from the pET24 expression vector (Novagen Inc., Madison, Wis.).
[0092]FIG. 8A is a Coomasie Brilliant Blue-stained gel of purified GST-Tp17 chromatographic fractions. Lane 1: purification process with added chicken lysozyme; lane 2: purification process without added chicken lysozyme; lane 3: MWM: molecular weight markers.
[0093]FIG. 8B is a Western Blot and Coomasie Brilliant Blue-stained gel of purified Tp17-HIS chromatographic fractions. Lane 1: Western blot using a syphilis positive human serum of proteins recovered from the purification process in the presence of added chicken lysozyme; lane 2: Coomasie Brilliant Blue staining of proteins recovered from the purification process in the presence of added chicken lysozyme. The peptide sequences obtained by N-terminal amino acid sequencing of the proteins recovered from the electrophoretic bands in lanes one and two are indicated.

Problems solved by technology

This test is not generally used as a diagnostic due to its high cost.
Although these assays are widely used, they lack the sensitivity required for detecting early stage or low level infection, when Tp antibody levels in the body fluids are very low.
In addition, the popular use of individual recombinant or purified Tp antigens in existing immunoassays for syphilis does not account for the binding by some antibodies to complexes formed between Tp antigens and other antigens (i.e., Tp antigen binding partners) normally present in the subject's body fluid.
Existing immunoassays thus fail to detect such antibodies in the absence of the Tp antigen binding partner, which results in some instances in low sensitivity or false negative assay results.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compositions and methods for detecting pathogen infection
  • Compositions and methods for detecting pathogen infection
  • Compositions and methods for detecting pathogen infection

Examples

Experimental program
Comparison scheme
Effect test

example 1

Chicken Lysozyme Copurifies with Recombinant Forms of the Treponema Pallidum 17 kDa Antigen

[0242] In the context of purifying E. coli-derived, recombinant T. pallidum Tp17 antigen (GST-Tp17 or Tp17-HIS), a protein reproducibly co-purified with Tp17. This “contaminant” protein, which had a molecular weight of 14 KDa and did not react with an anti-Tp17 polyclonal serum, was identified as chicken lysozyme as described below.

[0243] A protein fraction containing both entities (Tp17 and the “contaminant”) was separated by PAGE-SDS, excised from the gel and subjected to N-terminal amino acid sequencing. The experiment yielded short N-terminal peptide sequences (6-7 amino acids) that matched perfectly with the expected sequence of the T. pallidum Tp17 antigen or chicken lysozyme, which was included in the cell paste resuspension buffer to facilitate bacterial cell lysis. These observations suggested that Tp17 interacts physically with chicken lysozyme. Experimental protocols corresponding...

example 2

Far Western Detection of Tp17 Binding to Chicken and Human Lysozyme

[0255] The observation that the T. pallidum 17 kDa (Tp17) protein antigen copurifies with chicken lysozyme strongly suggested a direct physical interaction between both proteins. In order to test this hypothesis, a Far-Western blot lysozyme-protein interaction assay was performed. The assay is summarized in FIG. 5 and comprises generally the following three steps: (1) immobilization of purified lysozyme onto a membrane; (2) probing of the membrane with a ligand likely to bind directly to the lysozyme; and (3) immunodetection of the bound lysozyme-ligand. A detailed experimental procedure is presented below.

[0256] Far Western Blotting Detection of Lysozyme-Tp17 Protein Interactions

[0257] Purified chicken egg white lysozyme and human breast milk lysozyme were purchased from Sigma-Aldrich (Madrid, Spain). Two series of aliquot fractions containing 1 μg, 5 μg, and 10 μg of purified lysozyme and a protein molecular wei...

example 3

The T. Pallidum Tp17 Protein Antigen Inhibits the Antibacterial Activity of Chicken and Human Lysozyme

[0259] Lysozymes are well characterized antibacterial agents found on mucosal surfaces and in biological fluids. Due to their potent acetyl-muramidase enzymatic activity, lysozymes are capable of hydrolyzing cell wall peptidoglycan, thereby killing many pathogenic bacteria. The strong binding between Tp17 and human lysozyme suggested that this binding may alter the antibacterial activity of lysozyme. This hypothesis is consistent with the observation that (i) T. pallidum is a mucosal pathogen and (ii) it is in contact with human lysozyme in its ecological niche, throughout its infectious life cycle.

[0260] To test this hypothesis, the antibacterial activity of both human and chicken lysozyme, in the presence or absence of GST-Tp17, was assayed using an EnzCheck® lysozyme assay kit (Molecular Probes, Eugene, Oreg.). The assay comprises the use of Fluorescein-labeled Micrococcus lyso...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
molar ratioaaaaaaaaaa
molar ratioaaaaaaaaaa
molar ratioaaaaaaaaaa
Login to View More

Abstract

The present invention generally features therapeutic and diagnostic compositions and methods for increasing or decreasing the binding of a lysozyme polypeptide to a Treponema pallidum P17 polypeptide (Tp17) or a Tp17-like polypeptide. More particularly, the invention relates to compositions and methods for detecting, treating, or preventing a pathogen infection or a chronic disorder; and to binding assays using a Tp17-like polypeptide and a lysozyme polypeptide.

Description

FIELD OF THE INVENTION [0001] The present invention generally features diagnostic and therapeutic compositions and methods derived from the characterization of the binding of a lysozyme polypeptide to a Treponema pallidum P17 polypeptide (Tp17) or Tp17-like polypeptides. In addition, the invention provides methods and compositions for increasing or decreasing the binding between a lysozyme and a TP-17 or a TP-17 like polypeptide. BACKGROUND OF THE INVENTION [0002] Syphilis is a disease caused by Treponema pallidum (hereinafter also referred to as “Tp”) infection. The diagnosis of syphilis is generally made by an immunoassay of anti-Tp antibody in the blood using, for example, the Treponema pallidum Hemagglutination Test (TPHA), the Fluorescent Treponema Antibody Absorption Test (FTA-ABS) and / or the Treponema pallidum Immobilization Test (TPI), as well as enzyme-linked immuno sorbent assay (ELISA) and Western Blot systems. These tests detect antibodies that react with Tp or antigen p...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C12Q1/70C07H21/04C12N15/86C07K14/18A61K38/16C07K14/20C12N9/36G01N33/569
CPCA61K38/164G01N2800/347C12N9/2462G01N33/56911G01N33/56983G01N33/571G01N33/573G01N2333/20G01N2333/924G01N2469/20G01N2500/02G01N2800/065G01N2800/24G01N2800/2821C07K14/20A61P1/02A61P1/04A61P11/00A61P11/16A61P13/12A61P15/02A61P15/16A61P15/18A61P25/28A61P27/16A61P29/00A61P31/00A61P31/04A61P31/06A61P31/14A61P31/16A61P31/18A61P31/20A61P31/22A61P33/06A61P35/00A61P35/02A61P37/04A61P37/08A61P43/00Y02A50/30
Inventor BERTHET, FRANCOISVAYREDA CASADEVALL, FRANCESCCRUZ SANZ MARIA, MARIALLOP GARCIA, TERESAMOR OLLE, ANGELS
Owner BIOKIT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products