Implant for soft tissue reconstruction

Inactive Publication Date: 2011-01-20
INT LIFE SCI
View PDF10 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009]According to the present invention is disclosed an implant for reconstructing soft tissues of the musculo-skeletal apparatus, in particular tendon, fascia, periosteum, ligament, muscle but excluding bone and articular cartilage having an initial tensile stiffness that is significantly lower than that of the tissue to be reconstructed. In this application “initial stiffness” is the tensile stiffness at the time of implantation. The implant of the invention has a porosity and texture capable of accommodating matrix producing cells to form a functional tissue. Furthermore, the implant material of the invention is capable of resisting long term stress relaxation and creep thereby avoiding plastic deformation of the implant. Stress relaxation that rapidly levels off (within, for instance, one minute) is acceptable while plastic deformation (elongation) is not. Plastic deformation or creep ruins the implant's ability to template the healing tissue to its desired dimensions ensuring correct kinematics. The ability to support an applied load with an initial stress relaxation that rapidly levels off asymptotically to a finite value is beneficial to the implant for two reasons. Firstly, the residual load generated from the prestretch procedure can reapproximate retracted tissues, a clinical condition often seen, for instance, in tendon injuries such as rotator cuff tears or in avulsion injuries. Secondly, the residual pre-stretch force of a pre-stretched implant used in joint surgery provides active joint stabilization. This kind of active joint stabilization is important for intra-articular ligament reconstruction according to the invention. The nature of stress relaxation of fabrics is two-fold. There are contributions both from the textile design and from the material itself. Depending on fiber interlocking the fibers slide in respect of each other; with an elastic material this sliding will be gradual and appear as a rapid stress relaxation. The material's resistance to stress relaxation is strongly dependent on inherent limitation of molecular mobility by cross-links that may be chemical or physical. Chemical cross-links are found in e.g. rubbers while physical cross-links of permanent character are found in e.g. poly(urethane urea). The limited molecular mobility also offers the ability to orient the molecular network by simply stretching the implant and thereby modulate its stiffness. The molecules orient along the direction of the applied pre-stretch. Thereby the implant is stiffened in the pre-stretch direction.
[0014]The present invention additionally discloses an implant made of the material of the invention manufactured into a porous matrix, a template, an added synthetic extracellular matrix, but most often referred to as a scaffold. The implant has a tensile stiffness significantly lower than that of the native tissue it is intended to reconstruct, for instance lower by at least 50% or at least 80% or 85% and even as much as 90% or more. The material of the invention has elastomeric characteristics, which ensures that the implant can be deformed without permanent elongation. The implant may be manufactured by processes with inherent ability to accomplish porosity such as foaming, porogen extraction from molded block, textile confection or non-woven structures made out of fibers. It is also possible to manufacture it from combinations of these processes such as a porous matrix reinforced by fibers or a fabric.

Problems solved by technology

Hence, loads cause larger deformations of a healing soft tissue than of the corresponding uncompromised native tissue.
Firstly, the residual load generated from the prestretch procedure can reapproximate retracted tissues, a clinical condition often seen, for instance, in tendon injuries such as rotator cuff tears or in avulsion injuries.
Secondly, the residual pre-stretch force of a pre-stretched implant used in joint surgery provides active joint stabilization.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Implant for soft tissue reconstruction
  • Implant for soft tissue reconstruction
  • Implant for soft tissue reconstruction

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0028]Shrunk knitted poly(urethane urea) ribbon. Yarn: 13 Tex poly(urethane urea) (Artelon®, Artimplant AB, Goteborg, Sweden). Equipment: Comez DNB / EL-800 (Comez s.p.A., Cilavegna, Italy) double needle bed crochet machine, for the production of technical and medical articles. Machine specifications: 15 gauge, 6 weft bars, double needle bed, latch needles. Heat set unit: Comez HSD / 800 comprising 2 heat-set cylinders. A plain ribbon W of 14 cm width was knit in the machine (FIG. 1). The ribbon W was shrunk in the heat set unit at 130° C. to produce a shrunk ribbon Ws at a thickness of 0.8 mm (FIG. 1).

[0029]Process parameters: Knitting speed: 26 cm / min; heat set unit speed: 14 cm / min; shrinkage along warp: about 45% (cf D1, width of ribbon W and d1, width of ribbon Ws); shrinkage across warp: about 45% (cf Dt, 20 loops, and dt, 20 loops). Warp thickness is slightly increased by shrinking. The warp knitting pattern is shown in Table 1. It is a sequence of four steps with 12 loops / cm.

TAB...

example 2

[0030]Tensile force v. elongation of strip samples of the fabric of Example 1. Ten millimeter wide strip samples were cut from the crimped knitted fabric As of Example 1. The elongation of three samples A, B, C at physiological elongation rates of 2% / s (A), 14% / s (B), and 100% / s (C) , gauge length of 20 mm, and physiological conditions, was recorded . Physiological conditions imply pH-buffered saline at 37° C. The curves for samples A and B were practically identical up 200% elongation. The samples burst at an elongation of about 220% and 230%, respectively. In contrast, sample C required an about 20% higher force for a given elongation and burst already at an elongation of about 210%.

example 3

[0031]Tensile force v. time of a sample of the fabric of Example 1. A 10 mm wide cut-out strip sample of the crimped knitted fabric As of Example 1, gauge length 20 mm, was stretched in a first step I to an elongation of 95% at about 55 N, elongation rate of 100% / s (FIG. 3a). Within a minute the force needed to keep the sample at that elongation dropped to about 35 N, step II. In a following step III the pre-stretched sample was kept at a reduced elongation of 70% for two weeks, during which period the free sample length remained constant. A bursting test at an elongation rate of 100% / s, step IV, concluded the experiment. The elongation of the sample during the stretching procedure is shown in FIG. 3b.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Timeaaaaaaaaaa
Login to view more

Abstract

Implant for reconstructing tissue of the musculo-skeletal apparatus selected by the group consisting of tendon, fascia, periosteum, ligament, muscle, includes a porous matrix or scaffold of a polymeric material having a tensile stiffness lower by 50% or more than the tensile stiffness of the native tissue it is intended to reconstruct.

Description

FIELD OF THE INVENTION[0001]The present invention relates to a surgical implant or graft for soft tissue reconstruction.BACKGROUND OF THE INVENTION[0002]Surgical treatment of injury to soft tissues of the muscular-skeletal system of mammals caused by trauma, sudden overload, fatigue, sickness or other degenerative medical condition may in some cases benefit from or even require structural support to start healing. An example of such a situation is injuries to structures that do not heal spontaneously such as the intraarticular crucial ligaments. A text book or review paper on sports medicine in general starts out with a phrase stating that “ . . . anterior cruciate ligament (ACL) rupture is the most common chronically incapacitating injury . . . ” stresses the importance to find a cure for this condition. The golden standard surgical therapy for ACL reconstruction is to put a biological graft where the native ACL used to be. Biological grafts can be either of auto or allogenic origi...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61F2/02
CPCA61F2/08A61L27/16A61L27/50A61L27/56D04B21/20A61L2430/34C08L75/04D10B2509/00
Inventor PERSSON, ANDERS
Owner INT LIFE SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products