Organic ligand, metal organic frames based on Cu (I) ions, synthetic method for organic ligand and metal organic frames based on Cu (I) ions and application
A metal-organic framework, organic ligand technology, applied in copper-organic compounds, chemical instruments and methods, organic chemistry, etc., can solve the problem of high maintenance costs
- Summary
- Abstract
- Description
- Claims
- Application Information
 AI Technical Summary 
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0074] Embodiment 1: the preparation of the metal-organic framework (MOF-2) of dark red Cu (I) ion
[0075] 1.N 2 Under protection, 3,5-dibromobenzoic acid (2.80g, 10mmol), pyridine-4-boronic acid (3.05g, 25mmol), potassium carbonate (17.2g, 125mmol) were placed in a 250mL three-necked flask, toluene, ethanol, water Each 50mL was used as a solvent, and the catalyst Pd(PPh 3 ) 4 (1.2g, 1mmol), heating to reflux for about 36h, standing still after the reaction, cooling, liquid separation, spin-dried organic phase, adding water and suction filtration, adjusting the pH value of the filtrate to 4-5, suction filtration precipitation, drying to obtain milky white Intermediate B 2.48g, yield 89.9%.
[0076] 2. Intermediate B (2.76g, 10mmol), 1.30g (12mmol) of o-phenylenediamine in a beaker, add 30g of PPA, heat up to 170-180°C, stir for 6-8h, after cooling, add about 200mL of water to dilute , adjust the pH value to 8-9, filter with suction, and perform silica gel column chromatog...
Embodiment 2
[0081] Embodiment 2: the fluorescent response of above-mentioned MOF-2 to liquid methanol, ethanol, isopropanol, n-propanol, such as Figure 4a shown.
[0082] Soak the metal-organic framework (MOF-2) of the above-mentioned dark red Cu(I) ions in the liquid phase of methanol, ethanol, isopropanol, and n-propanol for 5-10s, and the metal of the dark red Cu(I) ions The organic framework (MOF-2) turns yellow ( Figure 5a );pass 1 HNMR can confirm that this change is due to the guest water molecules in the metal-organic framework (MOF-2) of dark red Cu(I) ions being respectively absorbed by methanol (3), ethanol (4), isopropanol (5), n-propanol Alcohol (6) molecular displacement leads to (eg Figure 6c -f), and its fluorescence response increases sequentially, which are represented as MOF-2, methanol (3), ethanol (4), isopropanol (5), and n-propanol (6) from bottom to top in the figure.
Embodiment 3
[0083] Embodiment 3: the fluorescence response of above-mentioned MOF-2 to gaseous methanol, ethanol, isopropanol, n-propanol, such as Figure 4b shown.
[0084] Put the metal-organic framework (MOF-2) of the dark red Cu(I) ion in the gas phase of methanol, ethanol, isopropanol, and n-propanol for 30-40min, and the metal organic framework of the dark red Cu(I) ion The frame (MOF-2) turns yellow ( Figure 5b ), it can be determined by 1HNMR that this change is due to the fact that the guest water molecules in the metal-organic framework (MOF-2) of the dark red Cu(I) ion are respectively absorbed by methanol (7), ethanol (8), isopropanol (9) , n-propanol (10) molecular replacement, and its fluorescence response is enhanced in turn, shown in the figure from bottom to top as MOF-2, methanol (7), ethanol (8), isopropanol (9), n-propanol Alcohol (10).
[0085] We used Bruker AVANCE 300 nuclear magnetic resonance instrument to detect MOF-1, MOF-2, and the 3, 4, 5, 3, 4, 5, 6,7,8,...
PUM
 Login to View More
 Login to View More Abstract
Description
Claims
Application Information
 Login to View More
 Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com



