Manufacturing method of LED epitaxial wafer
A technology of LED epitaxial wafers and epitaxial wafers, which is applied in the direction of electrical components, circuits, semiconductor devices, etc., can solve the problems of reduced internal quantum efficiency, reduced diode performance, and poor anti-static breakdown ability, so as to reduce internal leakage and improve reflection. to the voltage and improve the effect of luminous efficiency
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
Embodiment 1
[0034] h 2 Purify the substrate at high temperature in the environment; H at 1000°C 2 Under the atmosphere, feed 100L / min of H 2 , keep the reaction chamber pressure at 100mbar, and process the substrate for 8min.
[0035] The epitaxial wafer includes a multi-quantum well layer in which a low-temperature buffer layer, a U-type gallium nitride GaN layer, an N-type GaN layer, a barrier layer / well layer / supplementary layer / slope well layer structure are sequentially formed from bottom to top on the substrate , functional layer, light emitting layer and P-type GaN layer.
[0036] Using the chemical vapor deposition method of metal organic compounds, at 550 ° C, the pressure of the reaction chamber is maintained at 300 mbar, and the flow rate of NH is 10000 sccm 3 , 50sccm TMGa, 100L / min H 2 1. Growing a low-temperature buffer layer GaN with a thickness of 20 nm on the substrate.
[0037] Grow a U-type GaN layer in the low-temperature buffer layer GaN: first grow a 2D-type GaN...
Embodiment 2
[0046] h 2 Purify the substrate at high temperature in the environment; H at 1050°C 2 Under the atmosphere, feed 120L / min of H 2 , keep the reaction chamber pressure at 200mbar, and process the substrate for 9 minutes.
[0047] The epitaxial wafer includes a multi-quantum well layer in which a low-temperature buffer layer, a U-type gallium nitride GaN layer, an N-type GaN layer, a barrier layer / well layer / supplementary layer / slope well layer structure are sequentially formed from bottom to top on the substrate , functional layer, light emitting layer and P-type GaN layer.
[0048] Using the chemical vapor deposition method of metal organic compounds, at 570 ° C, the pressure of the reaction chamber is maintained at 450 mbar, and the flow rate of NH is 15000 sccm 3 , 75sccm TMGa, 120L / min H 2 1. Growing a low-temperature buffer layer GaN with a thickness of 20nm-40nm on the substrate.
[0049] Grow a U-type GaN layer in the low-temperature buffer layer GaN: first grow a 2D...
Embodiment 3
[0058] h 2 Purify the substrate at high temperature in the environment; H at 1100°C 2 Under the atmosphere, feed 130L / min of H 2 , keep the reaction chamber pressure at 300mbar, and process the substrate for 10min.
[0059] The epitaxial wafer includes a multi-quantum well layer in which a low-temperature buffer layer, a U-type gallium nitride GaN layer, an N-type GaN layer, a barrier layer / well layer / supplementary layer / slope well layer structure are sequentially formed from bottom to top on the substrate , functional layer, light emitting layer and P-type GaN layer.
[0060] Using the chemical vapor deposition method of metal organic compounds, at 580 ° C, the pressure of the reaction chamber is maintained at 600 mbar, and the flow rate of NH is 20000 sccm 3 , 100sccm TMGa, 130L / min H 2 1. Growing a low-temperature buffer layer GaN with a thickness of 40 nm on the substrate.
[0061] Grow a U-type GaN layer in the low-temperature buffer layer GaN: first grow a 2D-type G...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com