Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

HoSrMnZn co-doped bismuth ferrite multiferroic film and preparation method thereof

A technology of multi-ferrous thin film and bismuth ferrite, which is applied in the coating and other directions to achieve the effects of easy control of the preparation process and doping amount, precise and controllable chemical composition, and easy reaction.

Active Publication Date: 2017-08-22
SHAANXI UNIV OF SCI & TECH
View PDF2 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Currently, there is no information about Bi 0.89 Ho 0.08 Sr 0.03 Fe 0.97-x mn 0.03 Zn x o 3 Related reports on multiferroic thin films and their preparation methods

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • HoSrMnZn co-doped bismuth ferrite multiferroic film and preparation method thereof
  • HoSrMnZn co-doped bismuth ferrite multiferroic film and preparation method thereof
  • HoSrMnZn co-doped bismuth ferrite multiferroic film and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0029] Step 1: Using bismuth nitrate, holmium nitrate, strontium nitrate, ferric nitrate, manganese acetate and zinc nitrate as raw materials (5% excess bismuth nitrate), the molar ratio is 0.94:0.08:0.03:0.96:0.03:0.01 (x=0.01 ) is dissolved in ethylene glycol methyl ether, stirs 30min, then adds acetic anhydride, stirs 90min, obtains the stable precursor solution that metal ion total concentration is 0.3mol / L; Wherein the volume ratio of ethylene glycol methyl ether and acetic anhydride is 3:1;

[0030]Step 2: Place the FTO / glass substrate in detergent, acetone, and ethanol in sequence for ultrasonic cleaning. After ultrasonic cleaning for 10 minutes each time, rinse the substrate with a large amount of distilled water, and finally dry it with nitrogen. Then put the FTO / glass substrate into the oven to bake until dry, take it out and let it stand at room temperature. Then place the clean substrate in an ultraviolet light irradiator for 40 minutes to make the surface of the ...

Embodiment 2

[0041] Step 1: Using bismuth nitrate, holmium nitrate, strontium nitrate, ferric nitrate, manganese acetate and zinc nitrate as raw materials (5% excess bismuth nitrate), the molar ratio is 0.94:0.08:0.03:0.95:0.03:0.02 (x=0.02 ) is dissolved in ethylene glycol methyl ether, stirs 30min, then adds acetic anhydride, stirs 90min, obtains the stable precursor solution that the total concentration of metal ions is 0.2mol / L; Wherein the volume ratio of ethylene glycol methyl ether and acetic anhydride is 2.5:1;

[0042] Step 2: Place the FTO / glass substrate in detergent, acetone, and ethanol in sequence for ultrasonic cleaning. After ultrasonic cleaning for 10 minutes each time, rinse the substrate with a large amount of distilled water, and finally dry it with nitrogen. Then put the FTO / glass substrate into the oven to bake until dry, take it out and let it stand at room temperature. Then place the clean substrate in an ultraviolet light irradiator for 40 minutes to make the surf...

Embodiment 3

[0045] Step 1: Using bismuth nitrate, holmium nitrate, strontium nitrate, iron nitrate, manganese acetate and zinc nitrate as raw materials (5% excess bismuth nitrate), the molar ratio is 0.94:0.08:0.03:0.94:0.03:0.03 (x=0.03 ) is dissolved in ethylene glycol methyl ether, stirs 30min, then adds acetic anhydride, stirs 90min, obtains the stable precursor solution that metal ion total concentration is 0.4mol / L; Wherein the volume ratio of ethylene glycol methyl ether and acetic anhydride is 3.5:1;

[0046] Step 2: Place the FTO / glass substrate in detergent, acetone, and ethanol in sequence for ultrasonic cleaning. After ultrasonic cleaning for 10 minutes each time, rinse the substrate with a large amount of distilled water, and finally dry it with nitrogen. Then put the FTO / glass substrate into the oven to bake until dry, take it out and let it stand at room temperature. Then place the clean substrate in an ultraviolet light irradiator for 40 minutes to make the surface of the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
remanent polarizationaaaaaaaaaa
Login to View More

Abstract

The invention provides a HoSrMnZn co-doped bismuth ferrite multiferroic film and a preparation method thereof. According to the invention, bismuth nitrate, holmium nitrate, strontium nitrate, ferric nitrate, manganese acetate and zinc nitrate are used as raw materials (wherein bismuth nitrate is 5% excess in amount), ethylene glycol monomethyl ether and acetic anhydride are used as solvents, and a spin-coating process and a layer-upon-layer annealing process are employed to prepare a Bi<0.89>Ho<0.08>Sr<0.03>Fe<0.97-x>Mn<0.03>Zn<x>O<3> multiferroic film, i.e., the HoSrMnZn co-doped bismuth ferrite multiferroic film. According to the invention, a sol-gel process is employed, and the spin-coating and layer-upon-layer annealing processes are utilized; requirements on equipment are simple; experimental conditions are easy to realize; the preparation method is suitable for preparation of films on large surfaces and surfaces with irregular shapes and allows chemical components to be accurate and controllable; and the prepared HoSrMnZn co-doped bismuth ferrite multiferroic film has good uniformity and improves the multiferroic performance of a BiFeO3 film.

Description

technical field [0001] The invention belongs to the field of functional materials, and relates to the preparation of a HoSrMnZn co-doped bismuth ferrite multiferroic film on the surface of a functionalized FTO / glass substrate, specifically Bi 0.89 Ho 0.08 Sr 0.03 Fe 0.97-x mn 0.03 Zn x o 3 Multiferroic thin film, x=0.01~0.04. Background technique [0002] Ferroelectric materials have a spontaneous electrical polarization that can be reversed (switched) in response to an applied electric field. For ferroelectric thin films, the high electric field required for polarization reversal can be obtained at a relatively low voltage, which makes ferroelectric thin films integrated into modern electronic devices. Non-volatile ferroelectric random access memory, especially high-density ferroelectric memory devices have shown great application prospects in the commercial field. Access memory has the advantages of non-volatility and fast reading speed, so it also has great applic...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): C03C17/34C04B35/40C04B35/622
CPCC03C17/3417C03C2217/94C03C2218/116C03C2218/32C04B35/2633C04B35/2641C04B35/2658C04B35/62222C04B2235/656C04B2235/768
Inventor 谈国强郭美佑杨玮刘云任慧君夏傲
Owner SHAANXI UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products