Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Process for producing aromatic polycarboxylic acid

a technology of aromatic polycarboxylic acid and process, which is applied in the preparation of carboxylic compounds, physical/chemical process catalysts, organic chemistry, etc., can solve the problems of complex operation, reaction is not readily advanced, and catalyst activity degrades

Inactive Publication Date: 2002-02-07
MITSUBISHI GAS CHEM CO INC
View PDF0 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0029] The reaction can be performed in a continuous operation at the first stage and in a continuous operation or in a batch operation at the second stage. Particularly, in order to display the advantageous effects of the present invention, continuous two stage type oxidation process to perform the reaction in a continuous operation at both the first stage and the second stage is most preferable.
[0030] After the completion of oxidation, the reaction liquid is subjected to known purifying treatments such as filtration and distillation, whereby trimellitic acid or pyromellitic acid can be obtained as a product.PREFERRED

Problems solved by technology

In contrast, oxidation of psuedocumene has a defect that the metal catalyst forms a salt with trimellitic acid of a product to deposit, so that activity of the catalyst is degraded and the reaction does not readily progress.
The process for producing trimellitic acid disclosed in Japanese Patent No. 2939346 comprising air-oxidizing psuedocumene in an acetic acid solvent has defects that the operation is complicated since it is necessary to control carefully and change a temperature and a water concentration in the reaction liquid; a high price catalysts such as cobalt zirconium and cerium are used; there is combustion of acetic acid as solvent and a recovery equipment of acetic acid as solvent is necessary.
The process for producing pyromellitic acid disclosed in Japanese Patent Publication No.7-55917 comprising air-oxidizing durene in an acetic acid solvent is not economical from the aspects that a high price is imposed on durene of the raw material since it is difficult to obtain it and the yield of pyromellitic acid is about 60 mol% since the oxidation reaction is more difficult than that in the process for producing trimellitic acid comprising air-oxidizing psuedocumene in an acetic acid solvent.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0034] Example 1

[0035] A catalyst liquid of bromine ion concentration 2.3% by weight and manganese ion concentration 0.39% by weight mixed 1452 g of water, 17.5 g of 100% hydrogen bromide and 30.5 g of manganese bromide (tetrahydrate) was charged to the first stage reactor in a continuous two stage type reactor, connected two zirconium autoclaves of inner capacity 2 L equipped with a reflux condenser, a stirrer, a heater, a raw material feeding port, a gas introducing port and reaction product withdrawing port and 1000 g of the catalyst liquid having the same components as in the first stage reactor was charged to the second stage reactor. Nitrogen was fed under an applied pressure via the gas introducing port to elevate the interior pressure of the first stage reactor up to 1 MPa and the interior temperature of the first and second stage reactors was elevated up to 220 .degree. C. with the heater. Then, each 2,4-dimethyl benzaldehyde at the rate of 200 g / hr and the catalyst liquid ...

example 2

[0040] Example 2

[0041] The oxidation of 2,4-dimethyl benzaldehyde was continuously performed in the same manner as in Example 1 except that the catalyst liquid to be charged to each reactor and to be fed to the first stage reactor was changed to a catalyst liquid of hydrogen bromide concentration 1.4% by weight and manganese ion concentration 0.39% by weight mixed 1465.5 g of water, 4.0 g of 100% hydrogen bromide and 30.5 g of manganese bromide (tetrahydrate) and the amount of the catalyst liquid to be fed to the second stage reactor was changed to 90 g / hr. The amount of bromine ion fed to the second stage occupied 22.2% of total amount of fed bromine ion. The result was shown in Table 1.

example 3

[0042] Example 3

[0043] The oxidation of 2,4-dimethyl benzaldehyde was continuously performed in the same manner as in Example 1 except that the catalyst liquid to be charged to each reactor and to be fed to the first stage reactor was changed to a catalyst liquid of hydrogen bromide concentration 2.0% by weight and manganese ion concentration 0.39% by weight mixed 1456.5 g of water, 13.0 g of 100% hydrogen bromide and 30.5 g of manganese bromide (tetrahydrate) and the amount of the catalyst liquid to be fed to the second stage reactor was changed to 120 g / hr. The amount of bromine ion fed to the second stage occupied 21.1 % of total amount of fed bromine ion. The result was shown in Table 1.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Percent by massaaaaaaaaaa
Login to View More

Abstract

A process for producing a polycarboxylic acid which comprises performing liquid phase oxidation of polyalkyl-substituted aromatic aldehyde and / or oxide derivative of polyalkyl-substituted aromatic aldehyde as raw material for oxidation with molecular oxygen at two stages in water solvent in the presence of a catalyst comprising bromine or both bromine and a heavy metal(s) at a temperature of 180 to 280 ° C., thereby producing trimellitic acid or pyromellitic acid, wherein said liquid phase oxidation is performed in a continuous operation at the first stage and in a continuous operation or in a batch operation at the second stage and a total amount of bromine in said catalyst is divided to add separately at each the first stage and the second stage.

Description

[0001] 1. Field of the Invention[0002] The present invention relates to a process for producing an aromatic polycarboxylic acid by liquid phase oxidation of polyalkyl-substituted aromatic aldehyde and / or oxide derivative thereof, and specifically, to process for producing trimellitic acid or pyromellitic acid.[0003] 2. Prior Art[0004] As industrial processes for producing trimellitic acid, a process comprising air-oxidizing psuedocumene as a raw material in an acetic acid solvent in the presence of a cobalt-manganese-bromine catalyst and a process comprising air-oxidizing 2,4-dimethyl benzaldehyde, 2,5-dimethyl benzaldehyde and 3,4-dimethyl benzaldehyde or 2,4-dimethyl benzoic acid, 2,5-dimethyl benzoic acid and 3,4-dimethyl benzoic acid of oxide derivative thereof as raw materials in water solvent in the presence of a catalyst containing bromine and manganese or cerium are widely known. As industrial processes for producing pyromellitic acid, a process comprising air-oxidizing dure...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01J27/128B01J27/08C07B61/00C07C51/235C07C51/265C07C63/307C07C63/313
CPCC07C51/235C07C63/307
Inventor OKOSHI, ATSUSHIURABE, ETSUOYABUNO, MASASHIOGAWA, HIROSHITANAKA, KAZUO
Owner MITSUBISHI GAS CHEM CO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products