Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Pulsed electromagnetic energy treatment apparatus and method

a technology of electromagnetic energy and treatment apparatus, which is applied in the field of electromechanical devices and methods for therapeutically treating human body tissue, can solve the problems of lack of therapeutic efficacy, and current pharmaceutical approaches that do not fully mimic the spatial and temporal patterns of growth factor activity needed, so as to reduce the size, bulk and power requirements, and simplify the treatment method.

Inactive Publication Date: 2006-06-15
REGENESIS BIOMEDICAL
View PDF99 Cites 42 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

"The present invention is an improved method and apparatus for treating chronic wounds using pulsed electromagnetic energy. The invention has several advantages over existing devices, including cost-effectiveness, ease of use, and the ability to produce consistent treatment dosages without the need for manual adjustments. The invention can deliver simultaneous treatment to multiple wound sites and has low power requirements, making it battery-operated and portable. The invention also includes multiple sensor and control circuits to ensure precise treatment dosage and automatic control of the output specifications. The invention has multiple treatment ports and allows for independent and simultaneous treatment of different wound sites on the same patient. Overall, the invention improves the efficiency and effectiveness of electromagnetic energy treatment for wound healing applications."

Problems solved by technology

However, clinical studies have been disappointing and some experts have suggested that an alternative to single growth factors as therapeutic agents is the utilization of growth factors in combination to elicit synergistic clinical efficacy.
This lack of therapeutic efficacy may be in part because wound healing is a complex programmed sequence of cellular and molecular events, including macrophage activation during inflammation, cell migration, angiogenesis, provisional matrix synthesis, synthesis of collagen by fibroblasts, and reepithelialization.
Current pharmaceutical approaches do not fully mimic the necessary spatial and temporal patterns of growth factor activity needed to promote wound healing.
Overall, the complexity and variability of clinical wounds have limited pharmacological approaches to accelerate wound healing, leaving dressings and nonpharmacological ancillary modalities to dominate the market associated with wound management.
However, a subcategory of these devices utilize pulsed electromagnetic energy output to theoretically stimulate tissue without inducing a thermal response, although this has never been completely proven to occur using existing devices.
In the United States, where wound care constitutes less than 1% of aggregate health care dollars, treating and managing pressure ulcers requires an inordinate amount of material, human resources, time and money.
The costs associated with managing just one type of chronic wound alone, pressure ulcers, are extraordinary.
Application of external electrical and electromagnetic fields is now an increasingly standard therapy for the treatment of nonunion bone fractures, but these devices have seen limited use in other areas of healing.
Unfortunately, this has led to unsubstantiated claims that electrical stimulation cures a wide variety of health problems, thereby alienating the medical profession.
Moreover, published reports of double blind placebo-controlled clinical trials utilizing a RF transmission device (Diapulse) suggest that this ancillary treatment device significantly reduces wound healing time for chronic pressure ulcers as well as for surgical wounds.
While numerous high frequency devices using pulsed electromagnetic energy to stimulate tissue growth have been developed, none have effectively addressed the needs of patients and health care providers.
The device disclosed in U.S. Pat. No. 5,584,863 has high power requirements, requires numerous manual adjustments for effective operation, incorporates only a single applicator, fails to ensure constant, known and replicable treatment dosage outputs, and provides no confirmation that the applicator is properly located during treatment.
While the various and several prior art inventions, as described in the above referenced patents, produce electrical, magnetic or electromagnetic fields for treatment of tissue, virtually none of the prior art describes any credible cellular or physiological or molecular processes by which such energy fields specifically alter, induce or otherwise make happen an increase in cell growth, proliferation or density.
Additionally, none of the previous high frequency, high power devices utilizing pulsed electromagnetic energy output adequately addresses such practical design concerns as ease of use, simultaneous treatment of multiple wound sites on the same patient, dosage measurement, monitored dosage control and / or dosage compliance.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Pulsed electromagnetic energy treatment apparatus and method
  • Pulsed electromagnetic energy treatment apparatus and method
  • Pulsed electromagnetic energy treatment apparatus and method

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0100] This example describes treatment on fibroblasts, a cell type critical to the wound healing process, using the present invention. Immortalized (Rat-2) or primary (human SA-1) fibroblasts were plated 24 hours prior to treatment in 96-well trays at initial densities from 500-10,000 cells per well in Dulbecco's modified Eagle's medium supplemented with high (10% horse, 5% fetal calf) or low (0.5% fetal calf) serum. Cells were treated either with the present invention or a control. The treatment parameters for the present invention, i.e., pulse duration, peak power, average power (dose) and rate of pulse presentation, were systematically varied. Optimal average power, pulse duration and repetition rate were shown to be about 32 mw / cm2, about 32 μs, and a mean of about 1,000 pps respectively. Systematic changes in proliferative response as a function of changes in parameter value were found for all conditions. These results demonstrate that specific characteristics of the present i...

example 2

[0101] This example evidences the dose- and time-dependent effects of treatment using the present invention on Rat-2 immortalized and SA-1 human primary fibroblasts in culture. Cells plated in multi-well trays at a series of densities in medium supplemented with serum at different concentrations were treated using the present invention at an average dose of betweeen about 0-178 mw / cm2. Other cells were treated with 32 mw / cm2 for 0 to 60 minutes. After 24 hrs, cells were quantitated directly, via mitochondrial enzyme activity or crystal violet staining. When control logic circuits were preset to provide a pulse width of 32 microseconds and a pulse rate of about 600-1,000 pulses per second, proliferation was significantly enhanced (50-200%, p50 of 15 mw / cm2 and an ED99 of 32 mw / cm2. Maximal proliferation occurred following 15-60 min treatment time with ½-maximal effects at 8 min. These results reveal optimal and minimal doses and times of treatment to trigger proliferation response.

example 3

[0102] Example 3 describes a novel and proprietary method of accelerating healing to closure of chronic cutaneous wounds. It is clear that effects seen clinically and in vitro are based upon enhanced pro-proliferative effects. Evidence for a specific mechanism for enhanced cell proliferation has now been obtained. Rat-2 immortalized or SA-1 human primary fibroblasts seeded at initial densities from 500-10,000 cells per well were treated with a 32 mw / cm2 dose or sham treated (naïve). At times ranging from 0 to 16 hr posttreatment, medium was removed from wells containing treated cells and transferred to wells containing naïve cells. To define positive and negative controls, respectively, some treated cells were kept in medium throughout, and some naive cells were not exposed to treated medium. At 24 hr posttreatment, all cells were crystal violet stained and quantified spectrophotometrically. Modest proliferation above control levels was observed for cells treated with the present in...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An apparatus and method for the treatment of chronic wounds using electromagnetic energy. The apparatus includes a generator and at least one applicator. The generator can produce electromagnetic energy and the applicator can apply the electromagnetic energy produced by the generator. A detector is disposed on the applicator that can measure the field strength of the electromagnetic energy applied.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The present application is a continuation application of U.S. patent application Ser. No. 09 / 994,598, entitled IMPROVED PULSED ELECTROMAGNETIC ENERGY TREATMENT APPARATUS AND METHOD, filed on Nov. 20, 2001, which is a continuation application of U.S. patent application Ser. No. 09 / 231,790, entitled IMPROVED PULSED ELECTROMAGNETIC ENERGY TREATMENT APPARATUS AND METHOD, filed on Jan. 15, 1999, which claims priority of an earlier filed provisional application U.S. Ser. No. 60 / 071,396, filed on Jan. 15, 1998, the entire content of which is incorporated herein by reference.TECHNICAL FIELD OF THE INVENTION [0002] This invention related to electromechanical devices and methods for therapeutically treating human body tissue, and more particularly to a device for and a method of stimulating cell proliferation and related molecular events using high frequency pulsed electromagnetic energy. BACKGROUND OF THE INVENTION [0003] The present invention i...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61N1/00A61N1/40
CPCA61N1/326A61N1/40
Inventor GEORGE, FRANK R.LOYA, ARTHUR A.RITZ, MARY C.BRYANT, ROBERT T.
Owner REGENESIS BIOMEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products