Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1382 results about "Dielectric barrier discharge" patented technology

Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial discharge, it was first reported by Ernst Werner von Siemens in 1857. On right, the schematic diagram shows a typical construction of a DBD wherein one of the two electrodes is covered with a dielectric barrier material. The lines between the dielectric and the electrode are representative of the discharge filaments, which are normally visible to the naked eye. Below this, the photograph shows an atmospheric DBD discharge occurring in between two steel electrode plates, each covered with a dielectric (mica) sheet. The filaments are columns of conducting plasma, and the foot of each filament is representative of the surface accumulated charge.

Device and method for preparing hydrogen through temperature controlled continuous decomposition of hydrogen sulfide

The invention discloses a device and a method for preparing hydrogen through temperature controlled continuous decomposition of hydrogen sulfide, belongs to the technical field of hydrogen preparation and gas purification, and relates to a dielectric barrier discharge temperature controllable plasma generating device and a method for preparing hydrogen through continuous and stable ionizing decomposition of a hydrogen sulfide gas or a gas containing hydrogen sulfide by using the device. The device is characterized in that a reactor has a coaxial sleeve type structure, a cylinder of the reactor is made of an insulating medium, a central electrode is formed by a metal, a grounding electrode is formed by a temperature controllable circulating liquid, and decomposed sulfur is separated through temperature control, so that continuous and stable operation of preparing the hydrogen through the decomposition of the hydrogen sulfide is ensured. The invention has the advantages that the method is suitable for preparing the hydrogen and elemental sulfur by dissociating the gases containing the hydrogen sulfide in chemical industries of natural gas, petroleum and coal; and the method does not have special requirement or limitation for the source and the composition of the gases, so the method has universal applicability for preparing the hydrogen and the elemental sulfur through the decomposition of the hydrogen sulfide.
Owner:BINZHOU UNIV

Experimental apparatus for acquiring large-area uniform discharge plasmas

The invention relates to an experimental apparatus for acquiring large-area uniform discharge plasmas, which belongs to the technical field of plasmas. The experimental apparatus comprises a bipolar nanosecond pulse power supply, a reactor, multi-needle-to-plate electrodes, a gas distribution system, a spectral measurement system and a discharge measurement system, wherein the bipolar nanosecond pulse power supply drives dielectric barrier discharge of air and other gas mixtures among the multi-needle-to-plate electrodes in the reactor, and the gas mixtures are input to the reactor through the gas distribution system; the spectral measurement system collects photonic information of plasma discharge in real time and inputs the photonic information to a computer for spectral analysis; and the discharge measurement system collects discharge voltage and current of the high-voltage nanosecond pulse power supply in real time, and the discharge voltage and current are displayed through a digital oscilloscope. By virtue of the bipolar nanosecond narrow-pulse power supply, the large-area discharge plasmas are generated without a magnetic field; and the generated plasmas are uniform, diffusive, high in electron density, high in energy utilization ratio, low in energy consumption and easy to control in a discharge process.
Owner:DALIAN UNIV OF TECH

Jet apparatus capable of blocking discharging from generating low temperature plasma by atmos medium

InactiveCN101330794ASolve the problem of limited application rangeEasy to modifyPlasma techniquePlasma jetParallel plate
A jetting device for a low-temperature plasma generated by the atmospheric dielectric barrier discharge relates to the technical field of the application of gas discharge plasma. Inert gas and air are used as working gas; the plasma generated in a discharge area is blown out in the form of jet; the problem of limited application range caused by the narrow parallel-plate dielectric barrier discharge area and a high plasma macroscopic temperature can be solved. The device has the structural characteristics that a hollow pipe-shaped connector is connected with a hollow dielectric pipe; an electrode coated with insulation dielectric is fixed at the center of the dielectric pipe; an annular electrode is closely attached to the outer wall of the dielectric pipe; the working gas enters the dielectric pipe from a flow meter and a retaining valve through the connector; the plasma is blown out to form the plasma jetting. The jetting device has the advantages of low plasma macroscopic temperature, large electron energy, wide expanded range, low cost, low energy consumption and high reliability; furthermore, the jetting device can used in the fields of sterilization and disinfection, the surface modification of complex-shaped material, waste gas treatment, ozone synthesis, as well as the physical and chemical fields of the discharge light source plasma.
Owner:XI AN JIAOTONG UNIV

Dielectric barrier discharge water treatment device and method

The invention provides a dielectric barrier discharge water treatment device and method, belonging to the technical field of a water treatment device and method. The device comprises a high-voltage high-frequency pulse power supply, a reactor shell, a column high-voltage electrode, a cylindrical submerged low-voltage electrode, a vermiculite-supported titanium dioxide catalyst, a dielectric barrier layer and a microporous aeration membrane. The method comprises the following steps: adding a solution to be treated, and applying a high-voltage pulse voltage between the column high-voltage electrode and the cylindrical submerged low-voltage electrode, wherein the peak voltage is 1-100kV, and the frequency is 1-50KHz; and adjusting the inlet air quantity, and regulating the contact time between treated wastewater and active particles inside the reactor. An aerator is introduced into the water treatment device, and medium-activity substances generated by dielectric barrier plasma discharge can completely enter the solution to the treated through the aerator, so the water treatment device has the advantages of high mass-transfer efficiency and short required time; the method is stable in running and simple to operate, and can run under atmospheric pressure; and the equipment is easy to manage and has high practicality and economical efficiency.
Owner:TAIYUAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products