Tunnel barriers based on rare earth element oxides

Inactive Publication Date: 2007-03-08
GLOBALFOUNDRIES INC
View PDF15 Cites 30 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0014] The MgO and Mg—ZnO tunnel barriers of the magnetic tunnel junction devices disclosed herein are preferably prepared according to methods in which the lower ferromagnetic (or ferrimagnetic) electrode is not oxidized, so as to give much higher tunnel magnetoresistance values than in the prior art using other tunnel barrier material such as aluminum oxide. Similarly, much higher spin polarization values of tunneling current are obtained in tunnel junction devices with one or more ferromagnetic (or ferrimagnetic) electrodes. The MgO or Mg—ZnO tunnel barrier so formed does not have a significant number of defects that would otherwise lead to hopping conductivity through the tunnel barrier. In preferred methods, highly oriented (100) MgO or Mg—ZnO barriers are formed without using single crystalline substrates or high deposition temperatures, thereby facilitating the manufacture of devices using standard deposition techniques on polycrystalline or amorphous films. Post anneal treatments are preferred to improve the tunneling magnetoresistance, which for the MgO structures disclosed herein can exceed 50, 100, 150 or even 200% at room temperature, and which for the Mg—ZnO structures disclosed herein can exceed 50% at room temperature.
[0015] For several aspects and embodiments of the invention disclosed herein, a MgO or Mg—ZnO tunnel barrier is sandwiched between an underlayer and an overlayer, either one or both of which may include one or more layers of a ferromagnetic material and/or a ferrimagnetic material. While the MgO (or Mg—ZnO) tunnel barrier is preferably in direct contact with the ferromagnetic material and/or ferrimagnetic material, each of the underlayer

Problems solved by technology

A potential disadvantage of crystalline MgO tunnel barriers is that the magnetic properties of the free or sensing magnetic layer, adjacent to the MgO barrier, may be influenced by the crystallinity

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Tunnel barriers based on rare earth element oxides
  • Tunnel barriers based on rare earth element oxides
  • Tunnel barriers based on rare earth element oxides

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0023] The tunneling current in an MTJ is spin polarized, which means that the electrical current passing from one of the ferromagnetic layers is predominantly composed of electrons of one spin type (spin up or spin down, depending on the orientation of the magnetization of the ferromagnetic layer). The tunneling spin polarization P of the current can be inferred from a variety of different measurements. The measurement most relevant to magnetic tunneling is to measure the conductance as a function of bias voltage for junctions formed from a sandwich of the ferromagnetic material of interest and a superconducting counter electrode (R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994)). These studies show that the spin polarization of the tunnel current measured in this way can be simply related to the TMR close to zero bias voltage as first proposed by Julliere (M. Julliere, Phys. Lett. 54A, 225 (1975)). In such a model P is defined as (n↑−n↓) / (n↑+n↓), where n↑ and n↓ are the de...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Magnetic tunnel junctions are disclosed that include ferromagnetic (or ferrimagnetic) materials and a bilayer tunnel barrier structure that includes a layer of a rare earth oxide. The bilayer also includes a layer of crystalline material, such as MgO or Mg—ZnO. If MgO is used, then it is preferably (100) oriented. The magnetic tunnel junctions so formed enjoy high tunneling magnetoresistance, e.g., much greater than 100% at room temperature.

Description

TECHNICAL FIELD [0001] The invention relates to an improved tunnel barrier for use in spintronic devices such as injectors of spin polarized current and the magnetic tunnel junction (MTJ). MTJ magnetoresistive (MR) devices find use as magnetic field sensors such as in read heads for reading magnetically recorded data, as memory cells in nonvolatile magnetic random access memory (MRAM) cells, and for magnetic logic and spintronic applications. More particularly, this invention relates to a method of forming improved composite tunnel barriers formed from rare-earth oxides and oxides of Mg, Al and Zn. BACKGROUND OF THE INVENTION [0002] The basic component of a tunnel spin injector and a magnetic tunnel junction is a ferromagnetic layer combined with a tunnel barrier. The basic structure of an MTJ is a sandwich of two thin ferromagnetic and / or ferrimagnetic layers separated by a very thin insulating layer. In both the spin injector and the MTJ, the electrons that tunnel from the ferroma...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G11B5/33G11B5/127
CPCB82Y25/00B82Y40/00G01R33/093G01R33/098H01F10/3295H01F10/3254H01F41/307H01L43/08H01L43/12H01F10/187H10N50/01H10N50/10
Inventor PAPWORTH PARKIN, STUART STEPHEN
Owner GLOBALFOUNDRIES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products