Methods for controlling gibberellin levels

a gibberellin and level technology, applied in the direction of enzymology, organic chemistry, transferases, etc., can solve the problems of seed failure to germinate or germinate, reduced yield, and considerable expense for growers

Inactive Publication Date: 2007-07-26
BROWN SHERRI M +9
View PDF0 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011] According to one aspect of the invention, methods are provided for growing a transgenic plant that has a transgene that includes a promoter and, operably linked to the promoter, a sequence that, when expressed, alters the level of a hormone, for example GA. The transgene thus causes one or more abnormal phenotypes in the transgenic plant or seeds or seedlings thereof, such as a shortened hypocotyl, shortened epicotyl, or both (compared with a control, i.e., an otherwise identical except for lacking the transgene). A phenotypically normal plant can be grown from the transgenic plant after applying to the plant or to the seed or seedling thereof (for example, applying indirectly to soil or directly to the plant, seed or seedling) a composition that includes a first compound that is metabolized to produce a second compound that substantially eliminates the abnormal phenotype. In the case of GA-deficient plants, for example, use of GA precursors or biosynthetic intermediates (e.g., ent-kaurene, ent-kaurenoic acid, ent-7α-hydroxykaurenoic acid, steviol, GA12-aldehyde, GA12, GA15, GA24, GA9, GA53, GA44, GA19, GA20, GA5, and GA3-3-acetate) helps to properly regulate the amount of bioactive GA that is available within the plants, seeds, or seedlings. Preferred compounds for administration to GA-deficient plants include GA9, GA15, GA19, GA24, GA44, GA53, GA5, and steviol. Several approaches are described herein for producing GA-deficient plants for which the preferred promoter is preferentially expressed in developing seeds, during seed germination, or in young seedlings.
[0021] According to another aspect of the invention, nucleic acid constructs are provided that comprise a promoter that causes expression of an operably linked nucleic acid segment in a plant cell and, operably linked to the promoter, the nucleic acid segment comprising a sequence that encodes a polypeptide having a GA 2-oxidase activity. Expression of the nucleic acid segment in the plant cell results in inactivation of an endogenous gibberellin in the plant cell, thereby reducing levels of the endogenous gibberellin in the plant cell compared with an otherwise identical plant cell in which the nucleic acid segment is not expressed. For example, the sequence may encode a polypeptide having at least 70% amino acid sequence identity, preferably having only silently or conservative amino acid substitutions, and most preferably having 100% amino acid sequence identity with a polypeptide encoded by a member of the group consisting of SEQ ID NO:57, 58, 60, 62, 64, 66, 67, 68, 69, 70, 71, and complements thereof.
[0022] According to another aspect of the invention, nucleic acid constructs are provided that comprise a promoter that causes expression of an operably linked nucleic acid segment in a plant cell and, operably linked to the promoter, the nucleic acid segment comprising a sequence that encodes a polypeptide having a phytoene synthase, C-20 oxidase, or 2β,3β-hydroxylase activity. Expression of the nucleic acid segment in the plant cell results in metabolism of a gibberellin precursor in the plant cell to produce a metabolite that is not a gibberellin precursor in the plant cell, thereby reducing levels of the endogenous gibberellin in the plant cell compared with an otherwise identical plant cell in which the nucleic acid segment is not expressed. For example, the sequence may encode a polypeptide having at least 70% amino acid sequence identity, preferably having only silently or conservative amino acid substitutions, and most preferably having 100% amino acid sequence identity with a polypeptide encoded by a member of the group consisting of SEQ ID NO: 75, 77, 79, and complements thereof.
[0025] According to another aspect of the invention, compositions are provided that comprise a seed of a plant that has a gibberellin-deficiency that results in at least one abnormal phenotype in the seed or in a seedling of the plant compared with a seed or seedling of an otherwise identical plant having wild-type levels of gibberellin; and a composition applied to a surface of the seed that comprises an amount of at least one GA compound that is effective to substantially eliminate the abnormal phenotype. The seed may be of a non-transgenic plant (e.g., a GA-deficient point or deletion mutant) or a transgenic plant comprising a transgene comprising a promoter and, operably linked to the promoter, a sequence that, when expressed, reduces gibberellin levels in the seed or seedling. The GA compound is preferably selected from the group consisting of ent-kaurene, ent-kaurenoic acid, ent-7α-hydroxykaurenoic acid, steviol, GA12-aldehyde, GA12, GA15, GA24, GA9, GA53, GA44, GA19, GA20, and GA5, most preferably GA9, GA15, GA19, GA24, GA44, GA53, GA5 and steviol.
[0027] According to another aspect of the invention, lodging is reduced or prevented in a plant that is susceptible to lodging under conditions that are conducive to lodging by methods that employing a transgenic plant wherein the capacity to biosynthesize one or more plant hormones that affects the height of the seedling or plant is inhibited, resulting in a deficiency in the level of the hormone(s) and reduced height, compared to a control. After the conducive conditions are no longer present, the plant or a seed or seedling thereof can be grown to a normal height by contacting seed of the plant with an amount of at least one GA compound that is effective to increase the height of the seedling or plant.

Problems solved by technology

However, frequently conditions can occur in which after planting of the seed, the seed fails to germinate or germinates poorly producing a thin stand of plants with reduced yield or necessitating the replanting of the crop with new seed at considerable expense to the grower.
Also, seeds may germinate precociously if the environmental conditions at crop maturity are such that the seed prematurely sprout.
This is a problem in some wheat varieties and causes a loss of yield and quality of the harvested grain.
In many developing countries storage facilities are inadequate and seed and food quality may be affected when seed dormancy is broken and the process of seed germination begins in storage.
The failure of seeds to germinate uniformly and at high frequency is an important factor affecting crop yield.
Although these mutants demonstrate the role of GA in seed germination, they do not establish the developmental timing required for expression of GA for normal seed germination and seedling growth.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods for controlling gibberellin levels
  • Methods for controlling gibberellin levels
  • Methods for controlling gibberellin levels

Examples

Experimental program
Comparison scheme
Effect test

example 1

Canola (Brassica napus) CPS Gene

[0519] The canola (Brassica napus) CPS gene is isolated by identifying sequence conservation between the amino acid sequences of the maize (Bensen et al., Plant Cell 7: 75-84 (1995)) and Arabidopsis (Sun et al., Plant Cell 6: 1509-1518 (1994)) CPS proteins. Based on the sequence in the conserved regions, degenerate oligonucleotides are designed. These primers correspond nucleotides 439-459 and 1702-1720 in maize and nucleotides 393-413 and 1642-1660 in Arabidopsis in the respective referenced articles.

Mot 0:TCGGCITACGAYACIGCITGG(SEQ ID NO:9)Mot 7:AGCTGATGCIGAGCTTGGC(SEQ ID NO:10)

[0520] Primer sequences Mot 0 and Mot 7 are used in reverse transcriptase polymerase chain reaction (RT-PCR) to isolate canola CPS sequences.

[0521] RNA is isolated from 4 day old canola seedlings and first strand cDNA is prepared using the SuperScript Preamplification System (Gibco-BRL Life Technologies) according to the manufacturer's recommendations. The cDNA synthesized...

example 2

Soybean (Glycine max) CPS Gene

[0527] For the generation of soybean CPS gene sequences, a series of degenerate oligonucleotides are designed based on comparisons of the Arabidopsis and Zea mays sequences. Based on this information, four oligonucleotide primer pools are designed for use in PCR experiment containing mixtures potentially capable of annealing to the CPS gene coding nucleotide sequences from diverse plant species:

#1 soydeg1:GCITAYGAYACIGCITGGGTNGC(SEQ ID NO:11)#2 soydeg3:YTICAYAGYCTIGARGGIATG(SEQ ID NO:12)#3 soydeg7:CKRAAIGCCATIGCIGTRTCRTC(SEQ ID NO:13)#4 soydeg8:CATICKRTAIARIGTYTTICCIAT(SEQ ID NO:14)

[0528] Seeds from Glycine max (Asgrow, A3237) are grown in a greenhouse for 6 days. Epicotyls are collected and flash frozen with liquid nitrogen. Total cellular RNA is prepared using standard phenol-chloroform extraction procedures followed by lithium chloride precipitation to remove contaminating DNA and low molecular weight RNA species. Purified RNA precipitates are the...

example 3

Cotton (Gossypium hirsutum) CPS

[0549] The same series of degenerate oligonucleotides that are designed based on comparisons of Arabidopsis and Zea mays CPS sequences for the cloning of the Glycine max CPS cDNA are used in PCR experiments to clone the CPS gene from Gossypium hirsutum (soydeg1 SEQ ID NO:11, soydeg7 SEQ ID NO: 13).

[0550] PCR is performed on Gossypium hirsutum, cv. Coker-312, genomic DNA using the ‘Touchdown PCR’ technique (Don et al., 1991). Following a 3 minutes / 94° C. denaturation, annealing temperatures are decreased by 1° C. every two cycles between 60 and 46° C., followed by 10 cycles at 45° C., then 10 minutes / 72° C. Primers soydeg1 (SEQ ID NO:11) and soydeg3 (SEQ ID NO:12) generated a 1.3 kb PCR product. The PCR product is purified by agarose gel electrophoresis and subcloned into the TA cloning vector pCRR2.1 (Invitrogen). The subclone is sequenced using the PRISM DyeDeoxy Terminator Cycle Sequencing Kit (Applied Biosystems). The DNA sequences obtained are an...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
radiusaaaaaaaaaa
molecular weightaaaaaaaaaa
molecular weightaaaaaaaaaa
Login to view more

Abstract

Methods and materials are disclosed for the inhibition and control of gibberellic acid levels. In particular, nucleic acid sequences of copalyl diphosphate synthase. 3-β hydroxylase, and 2-oxidase and additional nucleic acid sequences are disclosed. Gibberellic acid levels may be inhibited or controlled by preparation of a chimeric expression construct capable of expressing a RNA or protein product which suppresses the gibberellin biosynthetic pathway sequence, diverts substrates from the pathway or degrades pathway substrates or products. The sequence is preferably a copalyl diphosphate synthase sequence, a 3β-hydroxylase sequence, a 2-oxidase sequence, a phytoene synthase sequence, a C20-oxidase sequence, and a 2β,3β-hydroxylase sequence. Administration of a complementing agent, preferably a gibberellin or gibberellin precursor or intermediate restores bioactivity.

Description

CROSS REFERENCES TO RELATED APPLICATIONS [0001] This Patent Application is related to U.S. Provisional Patent Application Nos. 60 / 096,111, filed Aug. 10, 1998 and 60 / 137,977, filed Jun. 7, 1999. Both of these priority documents are incorporated by reference in their entirely.FIELD OF THE INVENTION [0002] The invention relates to materials and methods for the control of seed germination and seedling growth and, more specifically, to the regulation of the gene products of the gibberellin biosynthetic pathway and restoration of normal seed germination and seedling growth by treatment with exogenously applied gibberellins or gibberellin precursors. BACKGROUND OF THE INVENTION [0003] Most agriculturally important crop plants are propagated by seed. The seed is planted and under favorable environmental conditions, the seed germinates and grows into crop plants. However, frequently conditions can occur in which after planting of the seed, the seed fails to germinate or germinates poorly pr...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A01H1/00C12Q1/68C07H21/04C12N9/10C12N15/82C12N5/04C12N9/00C12N9/02C12N15/53
CPCC12N9/00C12N9/0069C12N15/8297C12N15/8222C12N15/8243C12N9/0071
Inventor BROWN, SHERRI M.ELICH, TEDD D.HECK, GREGORY R.KISHORE, GANESH M.LOGUSCH, EUGENE W.LOGUSCH, SHERRY J.PILLER, KENNETH J.RAO, SUDABATHULAREAM, JOEL E.BAERSON, SCOTT R.
Owner BROWN SHERRI M
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products