Check patentability & draft patents in minutes with Patsnap Eureka AI!

Electronic component device and method for producing the same

a technology of electronic components and components, applied in the field of electronic components devices, can solve the problems of poor bonding portion production, reduced productivity, and difficulty in uniform growth of intermetallic compounds from the interface between the first and second low melting point metal layers

Inactive Publication Date: 2010-04-15
MURATA MFG CO LTD
View PDF2 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0027]According to the method for producing an electronic component device according to various preferred embodiments of the present invention, the low melting point metal layer is preferably provided with a sufficient thickness such that variations in the spacing between the first conductor film and the second conductor film is sufficiently compensated for, and, in the heat bonding process, the high melting point metal layer is sandwiched between the low melting point metal layers in the thickness direction, i.e., the high melting point metal layer is disposed at the middle in the thickness direction of the low melting point metal layers as a bonding material. Thus, the distance in which the high melting point metal is to be diffused in the low melting point metal layers can be decreased, and, in accordance therewith, the time required to diffuse the same can be reduced. As a result, the efficiency of the heat bonding process can be significantly improved.
[0028]The high melting point metal layer preferably has a thickness such that the high melting point metal can be supplied in an amount greater than the amount consumed during the formation of the intermetallic compound, and thus, the high melting point metal can be sufficiently supplied into the low melting point metal layer. Therefore, when both of the first and second high melting point metals include Cu as the main component and the low melting point metal includes Sn as the main component, Cu in a sufficient amount to form Cu3Sn as the intermetallic compound can be provided. Thus, the formation of Cu6Sn5, which is particularly fragile among the intermetallic compounds, is reliably prevented. Therefore, even when a stress caused by, for example, thermal expansion differences, occurs between the first component and the second component, the occurrence of cracking caused by the distortion, which results in poor conduction, is reliably prevented.
[0029]Moreover, in particular, it takes a long time to diffuse Sn in Cu, and thus, the above-described effect of shortening the time is particularly advantageous when the high melting point metal includes Cu as the main component and the low melting point metal includes Sn as the main component.
[0032]In the above-described preferred embodiments, when the first connecting electrode is formed at a location surrounded by the first sealing frame, the second connecting electrode is formed at the position surrounded by the second sealing frame, and the first connecting electrode and the second connecting electrode are electrically connected to each other simultaneously when the first sealing frame and the second sealing frame are bonded to each other, electrical connection and sealing can be simultaneously performed, thereby increasing the productivity of the electronic component device.
[0033]The first and second components are preferably prepared via the first and second aggregate substrates, respectively, and the low melting point metal layer forming step, the high melting point metal layer forming step, and the heat bonding step are performed in a state of the first and second aggregate substrates, the production of a plurality of electronic component devices can be performed at the same time. Thus, an increase in the productivity of the electronic component devices can be achieved. In general, since the aggregate substrate has a wide area and the in-plane variation in the distance between the sealing frames is likely to be relatively large due to bending of the aggregate substrate, the sealing in the aggregate substrate state may produce poor sealing portions. However, with the method for producing an electronic component device according to various preferred embodiments of the present invention, the distance between the sealing frames can be increased while maintaining a relatively short bonding time. Therefore, even when an in-plane variation occurs, sufficient sealing can be performed throughout the aggregate substrate surface while compensating for the in-plane variation.
[0034]With the electronic component device according to preferred embodiments of the present invention, the high melting point metal layer is preferably provided between the first and second intermetallic compounds. The high melting point metal is softer than the intermetallic compound. Therefore, even when a stress originating from thermal expansion differences occurs between the first component and the second component, the high melting point metal layer acts to reduce the stress, thereby effectively preventing the bonding portion from breaking.

Problems solved by technology

However, as the thickness of the low melting point metal layer 6 increases, the time required to diffuse the high melting point metal in the low melting point metal layer 6 increases, which results in a problem of reduced productivity.
In contrast, when the low melting point metal layer is thin in order to solve this problem, the ability to compensate for variations in the spacing between the first conductor film 3 and the second conductor film 4 is reduced, which results in another problem of a poor bonding portion being produced.
However, when the diffusion amount of Cu in Sn is not sufficient, Cu6Sn5, which is particularly fragile among the intermetallic compounds listed above, is likely to be produced.
However, according to the method illustrated in FIG. 8, when the supply amount of the metal powder 9 varies, it becomes difficult to uniformly grow the intermetallic compound from the interface between the first and second low melting point metal layers 6a and 6b.
When Cu is used as the high melting point metal and Sn is used as the low melting point metal and the supply amount of the metal powder 9 is not sufficient to form Cu3Sn, fragile Cu6Sn5 is likely to be formed and, due to the same reasons as described in Japanese Unexamined Patent Application Publication No. 2002-110726 above, cracking is likely to occur, which causes poor conduction.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Electronic component device and method for producing the same
  • Electronic component device and method for producing the same
  • Electronic component device and method for producing the same

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0044]FIGS. 1-1 to 1-4 are cross sectional views successively illustrating steps of a method for producing an electronic component device according to a first preferred embodiment of the present invention. FIGS. 1-1 to 1-4 illustrate a process for bonding a first component and a second component 12 to each other that are to be provided in a specific electronic component device. The first and second components 11 and 12 preferably include silicon, glass, or ceramic, for example.

[0045]FIG. 1-1 illustrates a state before the first component 11 and the second component 12 are bonded to each other. On the first component 11, a first conductor film 13 is formed and on the second component 12, a second conductor film 14 is formed. The first and second conductor films 13 and 14 include first and second high melting point metals, respectively. For simplification of the process, the first and second high melting point metals are preferably the same and, for example, include Cu as the main com...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Thicknessaaaaaaaaaa
Melting pointaaaaaaaaaa
Login to View More

Abstract

In a method for producing an electronic component device, a heat bonding step is performed in a state in which low melting point metal layers including low melting point metals including, for example, Sn as the main component, are arranged to sandwich, in the thickness direction, a high melting point metal layer including a high melting point metal including, for example, Cu as the main component, which is the same or substantially the same as high melting point metals defining first and second conductor films to be bonded. In order to generate an intermetallic compound of the high melting point metal and the low melting point metal, the distance in which the high melting point metal is to be diffused in each of the low melting point metal layers is reduced. Thus, the time required for the diffusion is reduced, and the time required for the bonding is reduced.

Description

BACKGROUND OF THE PRESENT INVENTION[0001]1. Field of the Present Invention[0002]The present invention relates to an electronic component device and a method for producing the same, and particularly to an electronic component device that includes conductor films including high melting point metals that are bonded to each other using a low melting point metal, and a method for producing the same.[0003]2. Description of the Related Art[0004]A known method for producing an electronic component device is illustrated in FIGS. 7-1 to 7-4. FIGS. 7-1 to 7-4 illustrate a process for bonding a first component 1 and a second component 2 to each other that are to be provided in an electronic component device. Such a process is described in, for example, Japanese Unexamined Patent Application Publication No. 2002-110726. The first component 1 illustrated in FIGS. 7-1 to 7-4 is, for example, a semiconductor chip as described in Japanese Unexamined Patent Application Publication No. 2002-110726 and...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B23K31/02H05K1/16
CPCB81C1/00269B81C3/001H01L2924/1461H01L2924/01327H01L2924/3025H01L2924/166H01L2924/16195B81C2203/0109B81C2203/019B81C2203/036H01L24/16H01L24/32H01L24/48H01L24/97H01L2224/16H01L2224/48091H01L2224/48227H01L2924/01004H01L2924/01078H01L2924/01079H01L2924/09701H01L2924/15153H01L2924/15165H01L2924/15787H01L2924/16152H01L2924/00014H01L2924/3512H01L2924/00H01L2924/00011Y10T428/31678H01L2224/0401H01L2224/45099H01L2224/45015H01L2924/207
Inventor KIMURA, YUJIHORIGUCHI, HIROKI
Owner MURATA MFG CO LTD
Features
  • R&D
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More