Methods and means for treating DNA repeat instability associated genetic disorders

Inactive Publication Date: 2010-07-22
BIOMARIN TECH BV
View PDF58 Cites 44 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

The continuous expression of mutant huntingtin molecules in neuronal cells results in the formation of large protein deposits which eventually give rise to cell death, especially in the frontal lobes and the basal ganglia (mainly in the caudate nucleus).
Since muscleblind proteins are splicing factors, their depletion results in a dramatic rearrangement in splicing of other transcripts.
Transcripts of many genes consequently become aberrantly spliced, for instance by inclusion of fetal exons, or exclusion of exons, re

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods and means for treating DNA repeat instability associated genetic disorders
  • Methods and means for treating DNA repeat instability associated genetic disorders
  • Methods and means for treating DNA repeat instability associated genetic disorders

Examples

Experimental program
Comparison scheme
Effect test

Example

Example 1

[0065]Immortomyoblast cell lines were derived from DM500 or CTG110 mice using standard techniques known to the skilled person. DM500 mice were derived from mice obtained from de Gourdon group in Paris. CTG110 mice are described below and present at the group of Wiering a and Wansink in Nijmegen. Immortomyoblast cell lines DM500 or CTG 110 with variable (CTG)n repeat length in the DMPK gene were grown subconfluent and maintained in a 5% CO2 atmosphere at 33° C. on 0.1% gelatin coated dishes. Myoblast cells were grown subconfluent in DMEM supplemented with 20% FCS, 50 μg / ml gentamycin and 20 units of γ-interferon / ml. Myotube formation was induced by growing myoblast cells on Matrigel (BD Biosciences) coated dishes and placing a confluent myoblast culture at 37° C. and in DMEM supplemented with 5% horse serum and 50 μg / ml gentamycin. After five days on this low serum media contracting myotubes arose in culture and were transfected with the desired oligonucleotides. For transfe...

Example

Example 2

FIG. 4

[0070]The DM500 immortomyoblast cell line carrying a human DMPK gene with an approximate (CTG)500 repeat expansion was cultured, prepared and transfected as described above (see example 1). In this example, the transfection was carried out with PS58 at different concentrations. Eighty four hours after start of treatment, the myotubes were harvested and Northern blot analysis was performed on isolated RNA as described above (see example 1).

[0071]FIG. 4 shows the quantification of the hDMPK mRNA signal preformed by phosphoimager analysis and normalized to the GAPDH signal at different concentrations. Under these conditions, a half maximal effect was observed at around 1 nM.

Example

Example 3

FIGS. 5 and 6

[0072]The DM500 immortomyoblast cell line carrying a human DMPK gene with an approximate (CTG)500 repeat expansion was cultured, prepared and transfected as described above (see example 1). However, in this example the transfection with 200 nM PS58 was carried out at different time points. Usually DM500 myotubes were harvested seven days after switching to low serum conditions to induce myotube formation. The standard procedure (as in example 1 and 2) was to start treatment (transfection) 48 h (two days) before harvesting. Now, treatment with PS58 was started 2 h-48 h (FIG. 5) or 2 d-8 d (FIG. 6) before harvesting. Northern blot analysis and quantification was performed as before.

[0073]FIG. 5 shows that expanded hDMPK mRNA in DM500 myotubes was decreased rapidly within 2 h of treatment with oligonucleotide PS58 compared to mock control treatment.

[0074]FIG. 6 shows a persistent decrease in expanded hDMPK mRNA in DM500 myotubes for at least 8 days. Please note th...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Lengthaaaaaaaaaa
Radioactivityaaaaaaaaaa
Login to view more

Abstract

The current invention provides for methods and medicaments that apply oligonucleotide molecules complementary only to a repetitive sequence in a human gene transcript, for the manufacture of a medicament for the diagnosis, treatment or prevention of a cis-element repeat instability associated genetic disorders in humans. The invention hence provides a method of treatment for cis-element repeat instability associated genetic disorders. The invention also pertains to modified oligonucleotides which can be applied in method of the invention to prevent the accumulation and/or translation of repeat expanded transcripts in cells.

Description

FIELD OF THE INVENTION[0001]The current invention relates to the field of medicine, in particular to the treatment of genetic disorders associated with genes that have unstable repeats in their coding or non-coding sequences, most in particular unstable repeats in the human Huntington disease causing HD gene or the myotonic dystrophy type 1 causing DMPK gene.BACKGROUND OF THE INVENTION[0002]Instability of gene-specific microsatellite and minisatellite repetitive sequences, leading to increase in length of the repetitive sequences in the satellite, is associated with about 35 human genetic disorders. Instability of trinucleotide repeats is for instance found in genes causing X-linked spinal and bulbar muscular atrophy (SBMA), myotonic dystrophy type 1 (DM1), fragile X syndrome (FRAX genes A, E, F), Huntington's disease (HD) and several spinocerebellar ataxias (SCA gene family). Unstable repeats are found in coding regions of genes, such as the Huntington's disease gene, whereby the p...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61K31/7052A61K48/00C07H21/00C12N15/63C12N15/00C12Q1/68A61P43/00C12N15/113
CPCA61K48/00C12N15/113C12N2310/11C12N2310/315C12N2310/321C12Q2600/156C12N2310/346C12Q1/6883C12N15/11C12N2310/3521A61P21/00A61P25/00A61P25/14A61P43/00
Inventor DE KIMPE, JOSEPHUS JOHANNESPLATENBURG, GERARD JOHANNESWANSINK, DERICK GERT
Owner BIOMARIN TECH BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products