Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

127 results about "Huntingtin" patented technology

The huntingtin gene, also called the HTT or HD (Huntington disease) gene, is the IT15 ("interesting transcript 15") gene, which codes for a protein called the huntingtin protein. The gene and its product are under heavy investigation as part of Huntington's disease clinical research and the suggested role for huntingtin in long-term memory storage.

Recombinant vector for knock-in of human Huntington gene, construction method of recombinant vector and application of recombinant vector in construction of model pig

ActiveCN107988256AIncreased probability of knock-in positive clonesEfficient FeasibilityStable introduction of DNANucleic acid vectorHuman studiesExon
The invention discloses a recombinant vector for the knock-in of a human Huntington gene, a construction method of the recombinant vector and application of the recombinant vector in the constructionof a model pig. According to the recombinant vector, a human mutated Huntington exon gene is knocked in a fixed point manner for the first time, a virulence gene is knocked in by virtue of a CRISPR / Cas9 technique for the first time, and a donor vector is optimized by optimizing sfRNA, so that the probability that the gene is knocked into a positive cloned cell is increased; and by combining with apig cell nucleus transplantation technique, the probability that a directly obtained positive cell is knocked into the pig is increased, and a small human Huntington gene knock-in pig is obtained, thereby proving the efficient feasibility of the method for constructing gene modified pigs. The constructed Huntington gene knock-in model pig has behavioral characteristics such as respiratory disturbance and dyskinesia similar to human Huntington diseases, and stable heritable passage can be realized, so that a reliable model is provided for the research of the human Huntington diseases; and thenumber can be guaranteed so as to realize drug screening, gene treatment, stem cell treatment and the like, and the model can be a good human disease model.
Owner:JINAN UNIVERSITY +1

Methods and compositions for development of drug screening procedures and diagnostic tools

This invention defines novel research and clinical laboratory methodology and compositions related thereto appropriate for use in (a) determining the presence of a neurodegenerative disease selected from the group limited solely to Charcot-Marie-Tooth disease, familial Alzheimer's disease, familial Parkinson's disease, Huntington's disease, spinal muscular atrophy, Friedreich'a ataxia, giant axon neuropathy, juvenile ceroid-lipofuscinosis, familial motor neuron diseases, juvenile diabetic polyneuropathy and Down's syndrome, (b) monitoring the ongoing status of the physiological expression of said disease and (c) screening candidate therapeutic drug agents for possible effectiveness. The invention is based on the new and novel observation that the presence of a neurodegenerative disease can be characterized in part by the expression in cultured fibroblasts obtained from the patient of one or more proteins which are not the product of a defective disease-inducing gene, but which are stress proteins, one or more other proteins modified by conditions of oxidative stress or one or more other disease-related proteins. The invention depends on living cell material, namely fibroblasts, which are readily and, if necessary, repeatedly available from a patient. When adapted as a method and composition useful for the screening candidate therapeutic drug agents for possible effectiveness, this technology offers advantages in terms of (a) providing research opportunities which, in some cases, never existed before, (b) cost effectiveness when compared to alternative technologies, (c) ability to be used readily on a large scale, (d) ability to generate meaningful data in a comparatively short period of time, and (e) providing an early stage opportunity to obtain information based on direct interaction of a candidate drug and a living tissue disease model. Various aspects of diagnostic methods and compositions are also disclosed.
Owner:SHAPIRO HOWARD K

Prevention and treatment of neurodegenerative diseases through autophagy activity mediated by ligand or arginylated bip binding to p62 zz domain

ActiveCN108883149ANervous disorderDipeptide ingredientsDiseaseLysosomal proteolysis
The drug action mechanisms and core techniques of the present invention are summarized in figure 1. Specifically, the invention provides malignant denatured proteins, such as mutant Huntingtin proteinor alpha-synuclein, stick together to grow into oligomer aggregates (1, 2), fibrillar aggregates (3), and ultimately inclusion bodies (4). Young neuronal cells produce a large quantity of Nt-Arg through N-terminal arginylation (5) of endoplasmic reticulum chaperones, such as BiP, and thereafter, arginylated BiP (R-BiP) comes into the cytoplasm and binds with denatured proteins (6). Nt-Arg of R-BiP, as a ligand, binds with the ZZ domain of p62 (7) to induce the structural activation of p62 (8) while the ordinarily closed inactive form of p62 is changed with an open form thereof, and thus PB1 and LC3-binding domains are exposed. On the basis of oligomerization (9) by the PB1 domain, p62 binds with the denatured protein aggregates to be concentrated to autophagically degradable aggregates, that is, p62 bodies (10). Thereafter, p62 completes autophagy targeting (11) and lysosomal proteolysis through binding with LC3 protruding on the autophagosomal membranes. In young neuronal cells, theautophagic proteolysis occurring through steps 5-11 is strong, and thus the cytotoxic protein aggregates (1-5) do not accumulate, but in aged neuronal cells, the autophagic proteolysis occurring through steps 5-11 is weakened, and thus the protein aggregates (1-5) accumulate, resulting in a vicious cycle. The present invention attempts to effectively remove Huntingtin and alpha-synuclein protein aggregates and the like by artificially activating p62 using low-mass ligands of the p62 ZZ domain (12, 13). Specifically, p62 binding the ligands through step 12 promotes p62-R-BiP-denatured protein oligomerization (9) and autophagy aggregate formation (10). In addition, the ligand-62 conjugates step 13 act as autophagy activators (14), to promote LC3 synthesis, the conversion of LC3-I into LC3-II, and the like, thereby promoting the formation of autophagosomes (15).
Owner:奧土择破利悟
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products