Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dairy product and process

a technology of whey protein and product, which is applied in the field of making whey protein concentrate, can solve the problems of denatured whey protein, high price, and undesirable gelling properties, and achieve the effect of simple heating step and without producing undesirable textures or flavours

Inactive Publication Date: 2012-05-10
FONTERRA COOP GRP LTD
View PDF5 Cites 21 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0070]The WPC starting material in (a) may be prepared by ultrafiltration of a raw whey at a pH of about 4.0-6.4, preferably pH 4.0-6.2, more preferably pH 4.0-6.2 and most preferably pH 4.6-6.0. Using ultrafiltration, water, lactose and minerals are removed, resulting in a retentate stream. Diafiltration may be applied during ultrafiltration to further reduce the level of dialyzable components. The ultrafiltration is typically carried out at 10-50° C. Ion exchange may be used to manipulate the ionic content of the proteinaceous stream. The level of calcium ions may be manipulated in some embodiments by ion exchange and replaced with monovalent cations. In other embodiments, the level of calcium may be increased by the addition of a soluble food approved calcium salt e.g. calcium chloride. The protein concentration of the WPC is preferably further increased by evaporation. Alternatively, the starting material may be a reconstituted whey protein prepared from a dried WPC or WPI.
[0073]The use of a high pressure tubular heater is preferred as a flow conduit, mainly because of its simplicity. The heating time varies according to the temperature used. At higher temperatures, for example 100° C., only a few seconds may be required. At 70° C., heating for a longer period may be required. It is also important to note that the degree of heating is a way of modifying the functional properties of the final powder. In different food applications, a wide range of modified WPCs with varied levels of protein denaturation may be required, and this invention provides a simple means of making these, just by modifying the protein concentration, pH, ionic environment, heating time and / or heating temperature.
[0078]A feature of the current invention is that the whey protein concentrate, at high total solids (e.g. >20%), is heated under turbulent flow. Because of the turbulent flow, the heat transfer coefficient is very high, resulting in fast heating. Effectively, the process of this invention offers a very efficient way of manufacture of micro-particulated whey protein products.

Problems solved by technology

The protein depleted whey stream resulting from the recovery of the lactalbumin may also be used as a stock food, but is otherwise expensive to dispose of.
In other applications, these gelling properties are undesirable.
Hoist et al declare: It is surprising that the new, partially denatured whey protein product with a denaturation level of preferably about 80% and a mean particle diameter in the range of preferably 40 to 50 μm has such good organoleptic properties and is free of any sandy or gritty aftertaste, whereas denatured whey proteins with similar particle sizes, as known, because of their bad organoleptic properties, particularly their sandy sensation in the mouth, are unsuitable of use as an additive to mayonnaise which is produced cold.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Dairy product and process
  • Dairy product and process
  • Dairy product and process

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0107]Fresh cheese whey was prepared using standard commercial ultrafiltration / diafiltration techniques to produce a retentate of about 20% total solids, of which 83% was protein. This concentrate stream was then adjusted to pH 6.9 using dilute NaOH and then further concentrated to about 33% solids using a falling film evaporator to produce a concentrate with an exit temperature of 45° C.

[0108]The warm concentrate (27% w / w protein) was fed at a flow rate of 6.3 m3 / h to two high pressure steam heated shell and tube heat exchangers in series using a high pressure pump with a delivery pressure of 250-300 bar. The concentrate exits the first high pressure heater (length 60 m) at ˜70° C. and exits the second high pressure heater at 80° C. The heater exchangers have a combined length of 120 in with an internal pipe diameter of 18.85 mm. The steam pressure supplied to the first heater was 0.6 bar (g) and the second heater pressure was 0.96 bar (g). The high pressure tubing was Schedule 80 ...

example 2

[0126]The inventive protein ingredient Was prepared using the method previously disclosed using a whey protein feed stream containing approximately 80% protein on a solids basis and a solids concentration of 32%, a processing flow rate of 6.4 m3 / h, a high pressure preheater outlet temperature of 58° C., a final high pressure heater outlet temperature of 80° C. and a residence time from the heater exit to the dryer of 23 seconds i.e. 0 s holding tube plant configuration.

[0127]Trials were carried out to establish the texture and sensory properties of high protein yoghurt using either the inventive heat denatured whey protein ingredient or a commercial native cheese whey WPC392 (Fonterra Co-operative Group Limited, Auckland, New Zealand) as alternative sources of protein fortification. These yoghurts will be compared to a standard 4.5% protein yoghurt (3.5% protein from skim milk, 1.0% protein from SMP top-up).

[0128]Initial yoghurt trials were carried out using the ingredient of this i...

example

High Protein Drinking Yoghurt with Low Viscosity

[0146]The inventive protein ingredient was prepared using the method of Example 1 using a whey protein feed stream containing approximately 80% protein on a solids basis and a solids concentration of 32%, a processing flow rate of 6.4 m3 / h, a high pressure preheater outlet temperature of 58° C., a final high pressure heater outlet temperature of 80° C. and a residence time from the heater exit to the dryer of 23 seconds i.e. 0 s holding tube plant configuration.

[0147]Trials were carried out to manufacture high protein drinking yoghurt with viscosity low enough for the final product to be consumed as a beverage.

[0148]Experimental Plan / Variables

[0149]Formulations

[0150]The recipes are given in Table 1.

TABLE 5Recipes for the preparation of the fermented beverageQuantity (g)High protein4.5% low fatInventiveyoghurtComponentbeverage(control)Dried denatured whey protein ingredient8470of this inventionSkim milk powder2239.6876.2Sugar6600Cream (...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A method for preparing a modified whey protein concentrate (WPC) or whey protein isolate (WPI) is described. It involves (a) providing an aqueous WPC or WPI solution having a protein concentration of 15-50% (w / v), at a pH of 4.7-8.5; (b) heat treating the solution to more than 50° C., for a time that allows protein denaturation to occur; the heat treating comprising heating the solution while under conditions of turbulent flow. At the end of the heat treatment, the heat treated material may be promptly transferred to a drier or to be mixed with other ingredients. The heat-treated WPC or WPI is not subjected to a mechanical shear process prior to the transfer other than where liquid is converted into droplets to facilitate drying. The modified WPC is useful in the manufacture of food and drinks where a high protein content is desired without undesirable changes in texture.

Description

TECHNICAL FIELD [0001]This invention relates to a process of making a whey protein concentrate (WPC) comprising denatured whey proteins.BACKGROUND ART [0002]Aggregates of heat denatured whey protein have been produced for many years. Lactalbumin is long known as a commercial product prepared by heating whey until the protein coagulates and is rendered insoluble. The insoluble material is filtered off, washed and dried. Lactalbumin has found many uses ranging from stock food to enhancing the protein content of bread and bakery products. The protein depleted whey stream resulting from the recovery of the lactalbumin may also be used as a stock food, but is otherwise expensive to dispose of.[0003]Many attempts have been made to make the production of denatured whey protein both more economic and more commercially useful. Much of the effort has been directed towards increasing the protein content of the whey by selectively removing the lactose content. The achievement of high protein co...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A23C21/00A23J3/08A23J1/20A23C1/00A23C1/14A23L33/00
CPCA23C9/1307A23J1/20A23C21/00A23C19/082A23C1/05A23C1/14A23C21/04A23C1/00A23C9/14A23J1/205A23J3/08
Inventor HAVEA, PALATASAGRANT, JOHN EDWARDHII, MICHAEL JIU WAIWILES, PETER GILBERT
Owner FONTERRA COOP GRP LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products